Parameterized Algorithms and Circuit Lower Bounds

Ryan Williams Stanford
Two Important Areas of Research

Faster FPT Algorithms for NP

Given: Verifier $V(x, y)$ that reads a k-bit witness y, and runs in $(k + |x|)^{O(1)}$ time.

Find: a deterministic algorithm which
1. Runs in *less than* $2^k \cdot |x|^{O(1)}$ time
2. Given any input x, finds a y so that $V(x, y)$ accepts (or concludes there is no y)

Circuit Lower Bounds

Given: Any NP problem (or any EXP^{NP} problem!)

Find: Sequence of algorithms $\{A_n\}$ such that:
1. $|A_n| \leq n^k + k$
2. On all inputs x of length n, $A_n(x)$ correctly solves the problem in $O(n^k)$ time.

(Alternatively, prove that no such algorithms exist!)
One May Look “Easier” Than The Other...

Faster FPT Algorithms for NP

Given: **Verifier** $V(x, y)$ that reads a k-bit witness y, and runs in $(k+|x|)^{O(1)}$ time.

Find: a deterministic algorithm which
1. Runs in *less than* $2^k \cdot |x|^{O(1)}$ time
2. Given any input x, finds a y so that $V(x, y)$ accepts (or concludes there is no y)

Circuit Lower Bounds

Given: Any NP problem (or any EXP^NP problem!)

Find: Sequence of algorithms $\{A_n\}$ such that:
1. $|A_n| \leq n^k + k$
2. On all inputs x of length n, $A_n(x)$ correctly solves the problem in $O(n^k)$ time.

(Alternatively, prove that no such algorithms exist!)
One May Look “Easier” Than The Other...

Faster FPT Algorithms for NP

- 3SAT: $O^*(1.308^n)$ time \[H12\]
- k-Path: $O^*(1.66^k)$ \[BHKP11\]
- Min-VC: $O^*(1.28^k)$ \[CKX06\]
 - degree-3: $O^*(1.17^k)$ \[M11\]
- 3-Coloring: $O^*(1.33^n)$ \[E04\]
- k-Coloring: $O^*(2^n)$ \[BHKP08\]
- ... many, many more!

Circuit Lower Bounds

Given: Any NP problem (or any EXP^{NP} problem!)

Find: Sequence of algorithms $\{A_n\}$ such that:
1. $|A_n| \leq n^k + k$
2. On all inputs x of length n, $A_n(x)$ correctly solves the problem in $O(n^k)$ time.

(Alternatively, prove that no such algorithms exist!)
One May Look “Easier” Than The Other...

<table>
<thead>
<tr>
<th>Faster FPT Algorithms for NP</th>
<th>Circuit Lower Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 3SAT: $O^*(1.308^n)$ time [H12]</td>
<td>- We don’t know how to get non-uniform</td>
</tr>
<tr>
<td>- k-Path: $O^*(1.66^k)$ [BHKP11]</td>
<td>algorithms that outperform these</td>
</tr>
<tr>
<td>- Min-VC: $O^*(1.28^k)$ [CKX06]</td>
<td>uniform ones</td>
</tr>
<tr>
<td>degree-3: $O^*(1.17^k)$ [X10]</td>
<td>- Best lower bound known:</td>
</tr>
<tr>
<td>- 3-Coloring: $O^*(1.33^n)$ [BE05]</td>
<td>There is a function in NP that</td>
</tr>
<tr>
<td>- Max-2-SAT: $O^*(1.8^n)$ [W05]</td>
<td>requires circuits of size $5n + o(n)$</td>
</tr>
<tr>
<td>- ... many, many more!</td>
<td>- It is still open whether EXP^{NP} has polynomial-size circuits!</td>
</tr>
</tbody>
</table>
Faster Algorithms \implies Lower Bounds!

Faster FPT Algorithms

Deterministic algorithm for:
- CircuitSAT in $n^{O(1)} \frac{2^k}{k \log k}$ time (circuits with k inputs, n gates)
- FormSAT in $n^{O(1)} \frac{2^k}{k \log k}$ time
- ACC SAT in $n^{O(1)} \frac{2^k}{k \log k}$ time
- Given a circuit that’s either unsatisfiable, or has at least 2^{k-1} satisfying assignments, determine which is the case in $n^{O(1)} \frac{2^k}{k \log k}$ time
 (This problem is in BPP!)

Circuit Lower Bounds

Would imply:
- $\text{NEXP } \not\subset P/poly$ [W’10]
- $\text{NEXP } \not\subset \text{non-uniform NC}^1$
- $\text{NEXP } \not\subset \text{non-uniform ACC}$ [W’11]
- $\text{NEXP } \not\subset P/poly$
Circuit Satisfiability

Let \mathbf{C} be a class of Boolean circuits

$\mathbf{C} = \{\text{Arbitrary Boolean formulas over AND and OR}\}$,
$\mathbf{C} = \{\text{Constant-depth circs}\}$, $\mathbf{C} = \{\text{Arbitrary Boolean circuits}\}$

The C-SAT Problem: Given a circuit $K(x_1, \ldots, x_k) \in \mathbf{C}$ with k inputs and n gates, is there an assignment $(a_1, \ldots, a_k) \in \{0,1\}^k$ such that $K(a_1, \ldots, a_k) = 1$?

\mathbf{C}-SAT is \mathbf{NP}-complete, for essentially all interesting \mathbf{C}

\mathbf{C}-SAT is solvable in $2^k \cdot n^{O(1)}$ time
Theorem: For many natural circuit classes C,
IF C-SAT has a slightly faster parameterized algorithm,
THEN NEXP can’t be efficiently simulated by C-circuits.

Proof Plan: Assume we have two kinds of “good algorithms”

1. Slightly faster C-SAT algorithm

2. Every problem in NEXP has a small C-circuit family

$$\forall \Pi \in \text{NEXP} \Rightarrow \Pi \text{ is solved by a family } \{C_n\}$$

Use them to simulate every 2^n time algorithm in $<< 2^n$ time

False by the time hierarchy theorem!
Assume (for an appropriate circuit class C)

- C-SAT with n inputs and $n^{O(1)}$ size is in $O(2^n/n^{10})$ time
- NEXP has polynomial-size circuits from class C

Karp-Lipton, Meyer ‘80: $P = NP \Rightarrow \text{EXP} \not\subset P/poly$

Assume $P = NP$ and $\text{EXP} \subset P/poly$

$\text{EXP} \subset P/poly \Rightarrow \exists$ polysize circuits C encoding tableaus:

For every exponential-time machine M and every string x, $C(M,x,i,j)$ prints the content of the jth cell of $M(x)$ in step i

The behavior of $M(x)$ can be simulated in $\Sigma_2 P$:

$(\exists C)(\forall i, j) [C \text{ makes consistent claims of cells } j-1, j, j+1 \text{ in steps } i-1, i, i+1]$

$\Rightarrow (\exists C)R(x,C)$, where $R(x,C)$ is a poly-time computable predicate

$\Rightarrow M(x)$ is in P. But then $\text{EXP} = P$, contradicting the time hierarchy.
Assume (for an appropriate circuit class C)

- C-SAT with n inputs and $n^{O(1)}$ size is in $O(2^n/n^{10})$ time
- NEXP has polynomial-size circuits from class C

Impagliazzo-Kabanets-Wigderson ’01:

$\text{NEXP} \subseteq \text{poly size } C \Rightarrow \exists$ circuit D from class C encoding tableaus:

For every non-deterministic 2^n time machine M and every string x, $D(M,x,i,j)$ prints the content of the jth cell of $M(x)$ in step i.

The behavior of $M(x)$ can be simulated in $\Sigma_2 \text{P}$:

$(\exists D)(\forall i,j) \left[D \text{ makes consistent claims of cells } j-1, j, j+1 \text{ in steps } i-1, i, i+1\right]$ Express this efficiently as an C-SAT instance??

$\Rightarrow (\exists D)R(x,D)$, where $R(x,D)$ is an $O(2^n/n^{10})$ time predicate

$\Rightarrow M(x)$ is in non-deterministic $O(2^n/n^{10})$ time.

But then $\text{NTIME}[2^n] \subseteq \text{NTIME}[2^n/n^{10}]$, contradicting the non-deterministic time hierarchy!
Definition: The Circuit Class ACC

An ACC circuit family \(\{ C_n \} \) has the properties:

- Every \(C_n \) takes \(n \) bits of input and outputs a bit.
- There is a fixed \(d \) such that every \(C_n \) has depth \(d \).
- There is a fixed \(m \) such that the gates of \(C_n \) are AND, OR, NOT, MODm (unbounded fan-in).

\[\text{MODm}(x_1, \ldots, x_t) = 1 \quad \text{iff} \quad \sum_i x_i \text{ is divisible by } m \]

\[n = 11 \]
\[\text{Size} = 5 \]
\[\text{Depth} = 3 \]
Definition: The Circuit Class ACC

An **ACC** circuit family \(\{ C_n \} \) has the properties:

- Every \(C_n \) takes \(n \) bits of input and outputs a bit
- There is a fixed \(d \) such that every \(C_n \) has depth \(d \)
- There is a fixed \(m \) such that the gates of \(C_n \) are AND, OR, NOT, \(\text{MOD}_m \) (unbounded fan-in)

\[\text{MOD}_m(x_1, \ldots, x_t) = 1 \iff \sum_i x_i \text{ is divisible by } m \]

Remarks

1. The default size of \(n^{\text{th}} \) circuit: **polynomial in** \(n \)
2. This is a **non-uniform** model of computation
 (Can compute some undecidable languages)
3. ACC circuits can be efficiently simulated by **constant-layer neural networks**
Where does ACC come from?

Sipser’s Program: Prove $P \neq NP$ by proving $NP \not\subset P/poly$.
The simple combinatorial nature of circuits should make it easier to prove impossibility results.

Ajtai, Furst-Saxe-Sipser, Håstad (early 80’s)
- $MOD2 \not\in AC0$ [i.e., $n^{O(1)}$ size ACC with only AND, OR, NOT]

Razborov, Smolensky (late 80’s)
- $MOD3 \not\in (AC0$ with $MOD2$ gates)
- For $p \neq q$ prime, $MODp \not\in (AC0$ with $MODq$ gates)

Barrington (late 80’s) Suggested ACC as the next step
- **Conjecture** Majority $\not\in ACC$

No real progress since then
Proof Strategy for ACC Lower Bounds

1. Show that faster ACC-SAT algorithms imply lower bounds against ACC

2. Design faster ACC-SAT algorithms!

Theorem For all d, m there’s an $\varepsilon > 0$ such that ACC-SAT on circuits with n inputs, depth d, MODm gates, and $2^n\varepsilon$ size can be solved in $2^n - \Omega(n^\varepsilon)$ time
Ingredients for Solving ACC SAT

Ingredients:

1. **A known representation of ACC**
 [Yao ’90, Beigel-Tarui’94] Every ACC function $f : \{0,1\}^n \rightarrow \{0,1\}$ can be expressed in the form
 $$f(x_1,\ldots,x_n) = g(h(x_1,\ldots,x_n))$$
 - h is a multilinear polynomial with K monomials and for all $(x_1,\ldots,x_n) \in \{0,1\}^n$, $h(x_1,\ldots,x_n) \in \{0,\ldots,K\}$
 - K is not “too large” (*quasipolynomial in circuit size*)
 - $g : \{0,\ldots,K\} \rightarrow \{0,1\}$ can be an arbitrary function

2. **“Fast Fourier Transform” for multilinear polynomials:**
 Given a multilinear polynomial h in its coefficient representation, the value $h(x)$ can be computed over all points $x \in \{0,1\}^n$ in $2^n \text{ poly}(n)$ time.
Theorem. For all d, m there's an $\varepsilon > 0$ such that $\text{ACC}[m]$ SAT with depth d, n inputs, 2^{n^ε} size can be solved in $2^n - \Omega(n^\varepsilon)$ time.

Proof:

Take the OR of all possible assignments to the first n^ε inputs of C. For small $\varepsilon > 0$, evaluate h on all $2^n - n^\varepsilon$ assignments in $2^n - n^\varepsilon$ poly(n) time.
Fast Multipoint Circuit Evaluation Suffices for Circuit Lower Bounds!

Theorem If Multipoint Evaluation of C-circuits of size s can be done in $2^n \poly(n) + \poly(s)$ time, then C-SAT is in $o(2^n)$ time.

Proof:

- Take an OR of all assignments to the first n^ε inputs of C.
- For small $\varepsilon > 0$, can evaluate circuit on all $2^{n - n^\varepsilon}$ assignments in $2^{n - n^\varepsilon} \poly(n) + \poly(2^{2n^\varepsilon})$ time.
Future Work

• Replace NEXP with simpler complexity classes
 Very recently: replaced with \((\text{NEXP} \cap \text{coNEXP})\)
 For EXP: may need to improve on exhaustive
 search for more complex problems

• Replace ACC with stronger circuits
 Design SAT algorithms for other circuit classes!
 Using strong versions of PCP Theorem:
 very weak derandomization suffices

• Find more connections between
 algorithms and lower bounds!
Thank you!