Parameterized Complexity in Constraint Programming

Toby Walsh
NICTA and UNSW

Newcastle, March 2010
Parameterized Complexity in Constraint Programming

Mostly based on [Bessiere, Hebrard, Hnich, Kiziltan, Quimper, Walsh, AAAI-08]
Parameterized Complexity
in
Constraint Programming

End of talk includes work with George Katsirelos and Nina Narodytska
Motivation

Beyond the NP-hardness of CP
- Parameterized complexity

Some common themes
- Tree width
- Cutsets & backdoors
- Dynamic programming
Constraint Programming 101

- Variables
 - Each with a finite domain of values

- Constraints
 - Allowed tuples of values
Constraint Programming 101

- Variables
 - $X_{ij} \in \{1, \ldots, 9\}$

- Constraints
 - $\text{AllDiff}(X_{11}, \ldots, X_{19}), \ldots$
 - $\text{AllDiff}(X_{11}, \ldots, X_{33}), \ldots$
 - $\text{AllDiff}(X_{11}, \ldots, X_{91}), \ldots$
 - $\text{AllDiff}(X_{11}, \ldots, X_{33}), \ldots$
Constraint Programming 101

- Backtracking search
 - Try $X_{11}=1$
 - Else $X_{11}=2$
 - ..

- Propagation
 - If $X_{11}=1$ then $X_{12} \neq 1$
 - If
Constraint Programming 101

• Global constraints
 – Capture common patterns
 – Efficient propagation algorithms
 – E.g. AllDiff
Parameterized complexity

• Useful insight into (in)tractability of CP
• Some common themes
 – Tree width
 – Backdoors/cutsets
 – Dynamic programming
Parameterized complexity

- Useful insight into (in)tractability of CP
- Some common themes
 - Tree width
 - Backdoors/cutsets
 - Dynamic programming

Practical algorithms?
Parameterized complexity

• Useful insight into (in)tractability of CP
• Some common themes
 – Tree width
 – Backdoors/cutsets
 – Dynamic programming

Practical algorithms?
Parameterized complexity

- Useful insight into (in)tractability of CP
- Some common themes
 - Tree width ☺
 - Backdoors/cutsets ☹
 - Dynamic programming

Practical algorithms?
Parameterized complexity

• Useful insight into (in)tractability of CP
• Some common themes
 – Tree width ☺
 – Backdoors/cutsets ☹
 – Dynamic programming ☺

Practical algorithms?
Parameterized complexity & CP

Complexity **of**
searching for a solution

Exponential sized
search tree

Complexity **within** the search for a solution

Propagation at each node of this tree
Complexity of search

- Finding solutions
 - Or proving unsatisfiability
- Consider the whole search tree!
k-consistency

- Arc-consistency (k=2)
 - If we assign any value to any variable, we can find a satisfying assignment for any other variable
 - E.g. $X > Y$, $\text{dom}(X) = \text{dom}(Y) = \{1,2\}$ then enforcing AC sets $X=2$, $Y=1$
k-consistency

- Arc-consistency (k=2)
 - If we assign any value to any variable, we can find a satisfying assignment for any other variable
 - Takes $O(ed^2)$ time to enforce
 - If constraint graph is acyclic then enforcing AC, we can find solutions backtrack free
k-consistency

- **k-consistency** ($k \geq 2$)
 - If we assign any values to any $k-1$ variables, we can find a satisfying assignment for any other variable
 - Takes $O(d^k)$ time to enforce
 - If constraint graph has tree width $\leq k$ then enforcing k-consistency, we can find solutions backtrack free \[\text{[Freuder 82]}\]
Complexity within search

- Global constraints are often on limits of tractability
- At each node of search tree
 - Propagation may be very costly
NValues(X1,..,Xn,N)

- Values often represent resources
 - E.g. frequency assignment
- NValues satisfied iff
 - \(|\{X_i \mid 1 \leq i \leq n\}| = N\)
 - Generalization of AllDifferent
NValues(X1,..,Xn,N)

- Propagation is NP-hard
 - Finding a satisfying assignment
 - Reduction from 3SAT
 - $X_i \in \{z_i, -z_i\}$ for $1 \leq i \leq n$
 - $X_{n+j} \in \{z_a, -z_b, z_c\}$ if jth clause is z_a or $-z_b$ or z_c
 - $N=n$
NValues(X1,..,Xn,N)

• Consider two different parameters
 – $k = |\bigcup \text{dom}(X_i)|$ then fixed parameter tractable
 – $k = \max(\text{dom}(N))$ then $W[2]$-hard
NValues(X₁,..,Xₙ,N)

• $k = \left| \bigcup \text{dom}(X_i) \right|

 - Define automaton that accepts only those sequences $X₁,..,Xₙ,N$ that satisfy NValues
 - States of automaton are sets of values used so far
 - Global REGULAR constraint propagates this in $O(ndQ) = O(nd2^k)$ time using dynamic programming
\begin{itemize}
 \item $k = \max(\text{dom}(N))$ then \textit{W[2]}-hard
 \begin{itemize}
 \item Hitting set is smallest set that \textit{hits} every set in a collection
 \item Hitting set is \textit{W[2]}-complete in size of hitting set
 \item Immediate reduction
 \end{itemize}
\end{itemize}
Backdoors

- **Strong backdoor**
 - Subset of variables which give a polynomial subproblem
 - Correlated with problem hardness [Williams, Gomes, Selman IJCAI-03]
 [Kilby, Slaney, Thiebaux, Walsh, AAAI-05]
Backdoors

- Many of our *fixed-parameter tractability* results for global constraints exploit
 - *Cycle cutsets* that are *backdoors* into an acyclic (and thus polynomial) subproblem
 - Once cycle cutset is instantiated, we can use 2-consistency (aka arc-consistency) to solve problem
Disjoint([X1,..,Xn],[Y1,..,Ym])

- Xi≠Yj for any i, j
- Useful in scheduling and time-tabling problems
- NP-hard to propagate
 - Simple reduction (homework exercise :-)

Newcastle, March 2010
Disjoint([X1,..,Xn],[Y1,..,Ym])

• Fixed-parameter tractable in
 \[k = |\bigcup \text{dom}(X_i) \cap \bigcup \text{dom}(Y_j)| \]

• Try all \(2^k\) possible subsets for
 \[\bigcup X_i \cap \bigcup \text{dom}(Y_j) \]
 – Each is a cycle cutset
 – Remaining \(X_i\) and \(Y_j\) are disjoint

Newcastle, March 2010
Disjoint([X1,..,Xn],[Y1,..,Ym])

• Fixed-parameter tractable in

\[k = |\bigcup \text{dom}(X_i) \cap \bigcup \text{dom}(Y_j)| \]
Disjoint([X1,..,Xn],[Y1,..,Ym])

• Fixed-parameter tractable in
 \[k = |\bigcup \text{dom}(X_i) \cap \bigcup \text{dom}(Y_j)| \]
 \[k = |\bigcup \text{dom}(X_i) \cup \bigcup \text{dom}(Y_j)| \]
Other FPT results

• **Uses**([X1,..,Xn],[Y1,..,Ym])
 – $\bigcup \text{dom}(X_i) \subseteq \bigcup \text{dom}(Y_j)$
 – $k = |\bigcup \text{dom}(Y_j)|$

• **Among**([X1,..,Xn],S,N)
 – $N = |\{i \mid X_i \in S\}|$
 – $k = |\text{ub}(S) \setminus \text{lb}(S)|$
Other FPT results

- **ROOTS**([X_1,..,X_n],S,T)
 - S={i | X_i \in T}
 - Used to encode Among, AtMost, AtLeast, Uses, Domain, ...
 - k=|ub(T) \setminus lb(T)|

- **CardPath**([X_1,..,X_n],C,N)
 - N = |\{i | C(X_i,..,X_i+p)\}|
 - Used to encode Regular, Sequence, Contiguity, Lex
FPT results in symmetry

- Lex Leader
 - General symmetry breaking method
- Double Lex
 - Specialized method for row and column symmetry
Symmetry

• All interval series
 – $X_1,\ldots, X_{11} = 3, 7, 4, 6, 5, 0, 10, 1, 9, 2, 8$
 – Problem from musical composition
Symmetry

• All interval series
 – $X_1, \ldots, X_{11} = 3, 7, 4, 6, 5, 0, 10, 1, 9, 2, 8$
 – Value symmetry: $i \mapsto 10 - i$
 – $X_1, \ldots, X_{11} = 7, 3, 6, 4, 5, 10, 0, 9, 1, 8, 2$
Symmetry

• All interval series
 – $X_1,..,X_{11} = 3,7,4,6,5,0,10,1,9,2,8$
 – Variable symmetry: $X_i \leftrightarrow X_{12-i}$
 – $X_1,..,X_{11} = 8,2,9,1,10,0,5,6,4,7,3$
Symmetry constraints

• Eliminate symmetric solutions
 – If we want such solutions, easy to generate
 – This reduces search exponentially in best case
 • Both symmetric
Symmetry constraints

- All interval series
- Value symmetry
 - $X_1,..,X_{11} \leq_{lex} 10-X_1,..,10-X_{11}$
- Variable symmetry
 - $X_1,..,X_{11} \leq_{lex} X_{11},..,X_1$
Lex Leader

- General method for any group of symmetries Σ
 - Leave just the smallest (in a lex ordering) in each symmetry class
 - $X_1, \ldots, X_n \preceq_{\text{lex}} \sigma(X_1), \ldots, \sigma(X_n)$ for all $\sigma \in \Sigma$
Lex Leader

• General method for any group of symmetries Σ
 - $X_1,..,X_n \leq_{\text{lex}} \sigma(X_1),..,\sigma(X_n)$ for all $\sigma \in \Sigma$
 - E.g. inversion value symmetry that maps a onto $d-a$
 - $X_1,..,X_n \leq_{\text{lex}} d-X_1,..,d-X_n$
Lex Leader

- General method for any group of symmetries Σ
 - Let $\text{LexLeader}(\Sigma, X_1, \ldots, X_n)$ hold iff $X_1, \ldots, X_n \leq_{\text{lex}} \sigma(X_1), \ldots, \sigma(X_n)$ for all $\sigma \in \Sigma$
 - Propagating LexLeader is NP-hard
Lex Leader

• General method for any group of symmetries \(\Sigma \)
 – Let \(\text{LexLeader}(\Sigma, X_1, \ldots, X_n) \) hold iff \(X_1, \ldots, X_n \leq_{\text{lex}} \sigma(X_1), \ldots, \sigma(X_n) \) for all \(\sigma \in \Sigma \)
 – Propagating \(\text{LexLeader} \) is NP-hard
 – Fixed-parameter tractable in \(k=|\Sigma| \)
Lex Leader

- General method for any group of symmetries Σ
 - Let $\text{LexLeader}(\Sigma, X_1, \ldots, X_n)$ hold iff $X_1, \ldots, X_n \leq_{\text{lex}} \sigma(X_1), \ldots, \sigma(X_n)$ for all $\sigma \in \Sigma$
 - Propagating LexLeader is NP-hard
 - Fixed-parameter tractable in $k = |\Sigma|$
- Actually number of generators of Σ!
Lex Leader

• General method for any group of symmetries Σ
 – Let $\text{LexLeader}(\Sigma,X_1,..,X_n)$ hold iff $X_1,..,X_n \leq_{\text{lex}} \sigma(X_1),..,\sigma(X_n)$ for all $\sigma \in \Sigma$
 – Define automaton that accepts only sequences X_1 to X_n that satisfy lex inequalities
 – States are which subset of inequalities have been satisfied so far, 2^k such states
Row & Col Symmetry

- Matrix model
 - Arrays of decision variables

- Row and col symmetry
 - Interchangeable rows & columns

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\end{bmatrix}
\]
Double Lex

- DoubleLex
 - Lex ordering rows (breaks all row symmetry)
 - Lex ordering cols (breaks all col symmetry)
 - But leaves some row/col symmetries
Double Lex

- **DoubleLex**
 - Lex order rows
 - Lex order cols

- Eliminates most symmetry
 - NP-hard to check if all symmetry is eliminated

Newcastle, March 2010
Double Lex

- DoubleLex
 - Lex order rows
 - Lex order cols
- Propagating DoubleLex is NP-hard
Double Lex

- DoubleLex
 - Lex order rows
 - Lex order cols

- Propagating DoubleLex is NP-hard
 - Took 10 years to show this!
Double Lex

- DoubleLex
 - Lex order rows
 - 001
 - Lex order cols
 - 010 and 011
- Does not eliminate all row & col symmetry
 - Look in the shadow!
Row & Col Symmetry

• Breaking all row & col symmetry
 – NP-hard in general
 – Fixed parameter tractable in $k = \min(\#\text{rows}, \#\text{cols})$
 – Simple observation:

All row symmetry is eliminated by lex ordering rows

Consider all 2^k possible permutations of columns where $k = \#\text{cols}$
Conclusions

• Parameterized complexity gives useful new insight into
 – Complexity of search in CP
 – Complexity of propagation in CP
Conclusions

• Parameterized complexity gives useful new insight into
 – Complexity of search in CP
 – Complexity of propagation in CP

• Some common themes
 – Tree width
 – Cycle cutsets & backdoors
 – Dynamic programming & automata