Computing Distances Between Evolutionary Trees

Catherine McCartin
Massey University, New Zealand

and

Magnus Bordewich, Michael Hallett, Charles Semple
Outline

We will consider a series of closely related problems:

1. TBR distance between pairs of unrooted phylogenetic trees
2. SPR distance between pairs of unrooted phylogenetic trees
3. rSPR distance between pairs of rooted phylogenetic trees

All NP-hard so aim for

1. FPT algorithms of parameterized versions
2. Approximation algorithms

All of the algorithms are variations on a theme.
unrooted binary phylogenetic X-trees

$$X = \{a, b, c, d, e, f, g\}$$
Tree metrics

How ‘far apart’ are these two trees

1. from each other?
2. from the ‘true’ tree?

Is there a true tree?
Tree metrics

How ‘far apart’ are these two trees

1. from each other?

2. from the ‘true’ tree?

Natural choice is to say two trees are ‘close’ if we can get from one to the other with a few local operations.
SPR operation

Diagram showing nodes a, b, c, d, e, f, and g, with connections indicating the SPR operation.
SPR operation
SPR operation
TBR operation
TBR operation
TBR operation
TBR operation

Diagram:

- Nodes: a, b, c, g, d, e, f
- Edges: edges between nodes
- Node a is connected to nodes b and c.
- Node g is connected to node f.
- Node e is connected to node d.
TBR operation
1 TBR = 1 or 2 SPR’s
1 TBR = 1 or 2 SPR’s
1 TBR = 1 or 2 SPR’s
$U = \text{subset of } V(T)$
U = subset of V(T)
T[U] = minimal subtree connecting U in T.
σ(T[U]) = phylogenetic tree obtained from T[U] by recursively contracting all degree 2 vertices and recursively removing any non-leaf degree 1 vertex
\(\sigma(T[U]) = \) phylogenetic tree obtained from \(T[U] \) by recursively contracting all degree 2 vertices and recursively removing any non-leaf degree 1 vertex.
$E = \text{subset of } E(T)$
\[\tau(T \setminus E) = \text{phylogenetic forest obtained from } T \setminus E, \]
by recursively contracting all degree 2 vertices and recursively removing any non-leaf degree 1 vertex.
\(\tau(T \setminus E) = \) phylogenetic forest obtained from \(T \setminus E \), by recursively contracting all degree 2 vertices and recursively removing any non-leaf degree 1 vertex.
Agreement forest for two X-trees T_1 and T_2

$F = \{t_1, t_2, \ldots, t_k\}$ a collection of phylogenetic trees such that

1. $L(t_1), \ldots, L(t_k)$ partitions X

2. $\forall j \in \{1, \ldots, k\}$ \hspace{0.5cm} $t_j = \sigma(T_1[L(t_j)]) = \sigma(T_2[L(t_j)])$

3. for $i = 1, 2$ the trees $\{T_i[L(t_j)] : 1 \leq j \leq k\}$ are vertex disjoint subtrees of T_i
Maximum agreement forest (MAF) for T_1 and T_2

an agreement forest with fewest components possible

F an agreement forest for T_1 and T_2 with $|F| = k$ minimized

$k - 1 = m(T_1, T_2)$ is equal to the TBR distance for T_1 and T_2
m(T_1, T_2) is at least half the SPR distance for T_1 and T_2

computing $m(T_1, T_2)$ is NP-hard
(Hein et al. 1996, Allen and Steel 2000)
Parameterized MAF problem

\textbf{k-Maximum Agreement Forest Problem:}

Input: pair of phylogenetic X-trees T_1 and T_2

Parameter: k

Output: agreement forest $F = \{t_1, t_2, \ldots, t_{k'}\}$ for T_1 and T_2
with $k' \leq k + 1$, or ‘NO’ if $m(T_1, T_2) > k$
FPT algorithm for k-MAF problem

Kernelization:
Rule 1: contract identical pendant subtrees into single leaves with new label
FPT algorithm for k-MAF problem

Kernelization:
Rule 1:
contract identical pendant subtrees into single leaves with new label
FPT algorithm for k-MAF problem

Kernelization:

Rule 2:
contract identical chains of pendant subtrees into 3-leaf chains with labels preserving orientation
FPT algorithm for k-MAF problem

Kernelization:
Rule 2: contract identical chains of pendant subtrees into 3-leaf chains with labels preserving orientation
FPT algorithm for k-MAF problem

Kernelization:
Reduced trees are either a NO instance or the number of leaves in each tree is bounded by 28k.
FPT algorithm for k-MAF problem

Kernelization:
If > 28k leaves in reduced trees then answer NO
else brute force search all k-subsets of 56k edges in T_1
Total time = $O(56k^k) + (|X|^{c})$
FPT algorithm for k-MAF problem

Search tree strategy:

Phase 1: look for *minimal incompatible quartets* in the current forest wrt T_2
remove such a quartet by ‘depronging’ the structure in exactly four ways, leading to four branches in our search tree.

Phase 2: look for obstructions in the current forest wrt T_2
remove each obstruction in exactly two ways, leading to two branches in our search tree.

Running time $O(4^k \cdot k^5) + p(|X|)$ (when combined with kernelization.)
Incompatible quartet

\[Q = ab \mid ef \]
‘e’ branch of Q in F, denoted by $F^{(e,Q)}$
Replacing sibling of e with $l_e \in F^{(e,Q)}$
Another incompatible quartet - ab | 1_e f
Minimal incompatible quartet

Q = ab | ef is a minimal incompatible quartet in F wrt T₂ if
1. Q is incompatible with T₂
2. for all x ∈ {a, b, c, d} and for all l ∈ F(x,Q), the quartet formed by replacing sibling of x with l is compatible with T₂
Minimal incompatible quartet property

Let $Q = ab \mid ef$ be a minimal incompatible quartet in F wrt T_2 then, for any set of leaves $\{l_a, l_b, l_e, l_f\}$ with l_x in the ‘x’ branch of Q wrt T_1 we have $l_a \ l_b \mid l_e \ l_f$ an incompatible quartet in F wrt T_2.

Thus, for any MAF $F’ = \{t_1, t_2, \ldots t_k\}$ for F and T_2, no set of the form $\{l_a, l_b, l_e, l_f\} \subseteq t_i$, for any $1 \leq i \leq k$.
Fork R induced by Q in F

Q = ab | ef

dashed edges are prongs of R
Minimal incompatible quartet property

Q = ab | ef , a minimal incompatible quartet in F wrt T₂, with induced fork R let F’ be an agreement forest for F and T₂.

any set of edges such that τ(F \ E) produces F’ from F will either contain one of the prongs of R, or an edge that can be exchanged for one of the prongs of R to produce E’, such that τ(F \ E’) produces F’ from F.
Minimal incompatible quartet property

\[Q = ab | ef \]
FPT algorithm: Phase I

Step 0: F <- dequeue U’ (initially containing only T₁)

Step 1: If there is a min incompatible quartet Q in F wrt T₂,
and |F| ≤ k, then
for each prong of fork R induced by Q in F
construct a new forest F’ obtained by the depronging,
enqueue each of the four forests in U’.
If F is compatible with T₂ then add F to U.

Step 2: If U’ empty stop, else go to Step 0.

Output: A collection U of forests compatible with T₂, with each such forest F having |F| ≤ k+1.
FPT algorithm: Phase I
β-mapping

\[\beta : V(F) \rightarrow V(T_2) \]

leaves in F map to leaves in \(T_2 \) with matching labels

for an internal vertex \(u \):
let \(T_1, T_2, T_3 \) be the three subtrees obtained from \(F \setminus u \) and
let \(l_1, l_2, l_3 \) be leaves in \(T_1, T_2, T_3 \) resp.
\(u \) maps to the unique vertex in \(T_2 \) that is on all three paths
\(P_{F_2}(l_1, l_2), P_{F_2}(l_2, l_3), P_{F_2}(l_1, l_3), \)

If \(F \) and \(T_2 \) are compatible, then \(\beta(.) \) is well-defined.
β-mapping

T_2

Diagram with nodes labeled a, b, c, d, e, f, g.
Obstructions

dashed edges are obstructions for F and T_2
(a,b) and (c,d) are obstructions for F and T_2 if
P_{T_2}(β(a), β(b)) and P_{T_2}(β(c), β(d)) share a vertex.

If F and T_2 are compatible, then obstructions (a,b) and (c,d)
are in separate components of F, say t_i and t_j resp.

Let T_a, T_b, be the two trees produced from t_i by removing (a,b),
T_c, T_d be the two trees produced from t_j by removing (c,d).

Consider any set of leaves \{l_a, l_b, l_c, l_d\} with l_x in T_x.
In any MAF F = \{t_1, t_2, \ldots, t_k\} for F and T_2,
no sets of the form \{l_a, l_b\} ⩲ t_i and \{l_c, l_d\} ⩲ t_j, for any 1 ≤ i,j ≤ k.
Obstruction property

Let e and e' be obstructions for F and T_2. Let F' be an agreement forest for F and T_2.

Any set of edges such that $\tau(F \setminus E)$ produces F' from F will either contain one of $\{e, e'\}$, or an edge that can be exchanged for one of $\{e, e'\}$ to produce E', such that $\tau(T_1 \setminus E')$ produces F' from T_1.
FPT algorithm: Phase II

Step 0: F <- dequeue U’ (initially the output queue from Phase I)

Step 1: If there are obstructions \{e, e’\} in F wrt T_2, and |F| \leq k, then, for each of e and e’ construct new forests \(\tau(F \setminus e)\) and \(\tau(F \setminus e’)\), enqueue these two forests in U’.
If no obstructions exist in F wrt T_2 then add F to U_{final}

Step 2: If U’ empty stop, else go to Step 0.

Output: A collection U_{final} of forests that are agreement forests for T_1 and T_2, with each such forest F having |F| \leq k+1.
FPT algorithm: Phase II
FPT algorithm for parameterized k-TBR problem running time $O(4^k \cdot k^5) + p(|X|)$ (when combined with kernelization.)

We get for free:

4-approximation algorithm for TBR problem, running time $O(|X|^6)$. Throw in all prongs at each step in Phase I, both obstructions at each step in Phase II.

Parameterized approximation algorithm for k-SPR problem
Output: Either a set of SPR operations $T_1 \rightarrow T_2$ of size at most $2k$ or ‘NO’ (only if SPR distance for (T_1,T_2) is > k)
What about rooted trees?

using *planted* rooted trees, we can characterize rSPR distance in terms of agreement forests.

(Hein et al. 1996, Bordewich and Semple 2004)
rSPR distance for rooted X-trees
rSPR distance for rooted X-trees
Agreement forest for rooted X-trees T_1 and T_2

$F = \{t_\rho, t_1, t_2, \ldots t_k\}$ a collection of phylogenetic trees such that

1. $L(t_\rho), L(t_1), \ldots, L(t_k)$ partitions $X \cup \{\rho\}$

2. $\forall j \in \{\rho, 1, \ldots, k\}$ \quad $t_j = \sigma(T_1[L(t_j)]) = \sigma(T_2[L(t_j)])$

3. for $i = 1, 2$ the trees $\{T_i[L(t_j)] : j \in \{\rho, 1, \ldots, k\}\}$ are vertex disjoint subtrees of T_i

$\sigma(.)$ and $\tau(.)$ defined as before except component roots are preserved
Agreement forests for T_1 and T_2
Maximum agreement forest (rMAF) for rooted trees T_1 and T_2

an agreement forest F for T_1 and T_2 with $|F| = k$ minimized

$k-1 = m_r(T_1, T_2)$ is equal to the rSPR distance for T_1 and T_2
computing $m_r(T_1, T_2)$ is NP-hard

(Hein et al. 1996, Bordewich and Semple 2004)

k-rMAF Problem:

Input: Pair of planted rooted phylogenetic X-trees T_1 and T_2

Parameter: k

Output: Agreement forest $F = \{t_\rho, t_1, t_2, \ldots t_{k'}\}$ for T_1 and T_2
with $k' \leq k$, or ‘NO’ if $m_r(T_1, T_2) > k$
FPT algorithm for rSPR:

1st attempt, again use kernelization.

\((T_1, T_2, k)\) reduced to \((S_1, S_2, k)\) with \(|L(S_1)| = |L(S_2)| = |X'| < 28k\).

at most \(4|X'|^2\) possible single rSPR operations
examine all possible paths of length \(k\) from \(S_1\)
in time \(O((56k)^{2k}) + p(|X|)\)

(Bordewich and Semple 2004)
Incompatible triple

F

T_2

$R = ab \mid c$
Minimal incompatible triple

define a partial ordering on triples:
xy | z < ab | c if r_{xyz} is a descendant of r_{abc}
or, r_{xyz} = r_{abc} and r_{xy} is a descendant of r_{ab}

R = ab | c in F is a *minimal incompatible triple* wrt F and T₂
if 1. R is incompatible with T₂
 2. no R’ < R in F incompatible with T₂
Layout of a minimal incompatible triple in \mathbb{F}

\[\begin{align*} c' & \in C - \{c\} \Rightarrow \quad cc' | a \text{ and } cc' | b \text{ compatible with } T2 \\ d & \in D_2 \Rightarrow \quad cd | a \text{ or } cd | b \text{ incompatible with } T2 \end{align*} \]
Layout of a minimal incompatible triple in F
Minimal incompatible triple property

\[R = ab \mid c, \text{ a minimal incompatible triple in } F \text{ wrt } T_2, \]
with edges \(\{e_a, e_b, e_c, e_r\} \) as shown in the layout.

let \(F' \) be an agreement forest for \(F \) and \(T_2 \).

any set of edges \(E \) such that \(\tau(F \setminus E) \) produces \(F' \) from \(F \) will either contain one of \(\{e_a, e_b, e_c, e_r\} \), or an edge that can be exchanged for one of \(\{e_a, e_b, e_c, e_r\} \) to produce \(E' \), such that \(\tau(T_1 \setminus E') \) produces \(F' \) from \(T_1 \).
Overlapping components

given t_s, t_t, overlapping in T_2, choose v_{st} minimal in T_2
e_s and e_t are obstructions in F
A 3-approximation algorithm for rSPR

R = ab | c, a minimal incompatible triple in F wrt T₂, with edges
{e_a, e_b, e_c, e_r} as shown in the layout
let F’ be an agreement forest for F and T₂.

any set of edges E such that τ(F \ E) produces F’ from F will contain an edge that can be exchanged for the set {e_a, e_c, e_r} to produce E’, such that τ(T₁ \ E’) is a subforest of F’

Main point: we can ignore e_b
rSPR Results

FPT algorithm for parameterized k-rSPR problem
running time $O(4^k \cdot k^4) + p(|X|)$

3-approximation algorithm for rSPR problem, running time $O(|X|^5)$

previous best: 5-approximation, linear time
(Bonet, St John, Mahindru 2006, based on Hein et al. 1996, Rodrigues et al. 2001)