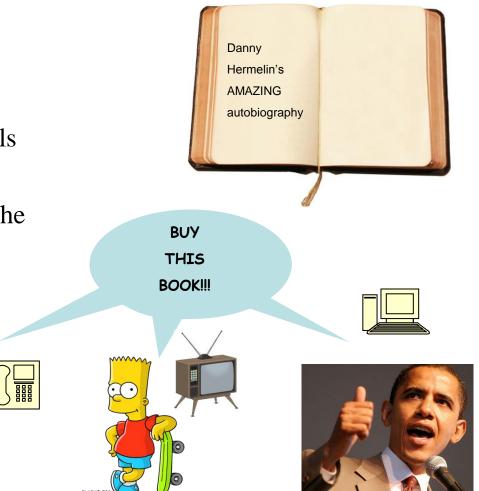


Treewidth Governs the Complexity of Target Set Selection

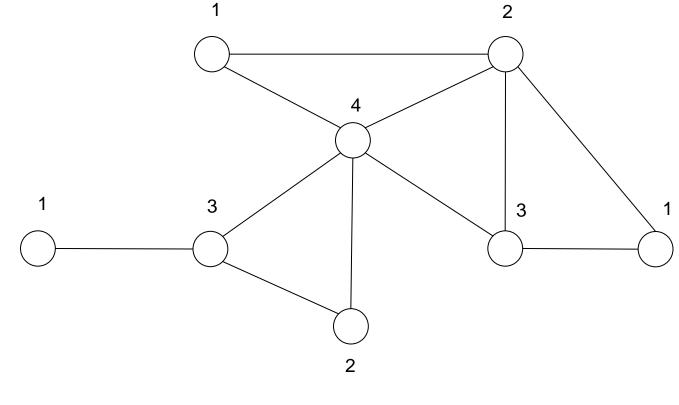
Danny Hermelin Max Planck Institute for Informatics

Joint work with: O. Ben-Zwi, D. Lokshtanov, I. Newman

- Suppose you have a new product you want to sell
- Find influential individuals
- Persuade them to spread the word

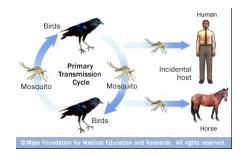


- Model as an activation process in a graph (social network):
 - vertices have integer thresholds



- Marketing on a social network
- Analyzing diffusion processes of ideas or innovations on social networks

• Predicting virus spread over large populations



Formal Definition

- **Instance**: Integers k, l and a graph G with thresholds $t : V(G) \rightarrow N$
- **<u>Goal</u>**: Find $S \subseteq V(G)$, $|S| \le k$, that activates at least *l* vertices in *G*

Previous Work:

- Domingos and Richardson [KDD 2001]
 - Introduced diffusion process into CS
- Kempe, Kleinberg and Tardos [KDD 2003, ICALP 2005]
 - Inapproximability result of $n^{(1-\varepsilon)}$ for maximizing *l*, given *k*
 - Approximation when thresholds are uniformly distributed
- Chen [SODA 2008]
 - Polylogarithmic inapproximability result for minimizing *k*, given *l*
 - Poly-time algorithm for trees (worst case thresholds)

Formal Definition

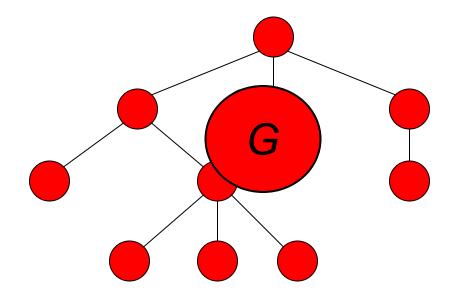
- **Instance**: Integers k, l and a graph G with thresholds $t : V(G) \rightarrow N$.
- **<u>Goal</u>:** Find $S \subseteq V(G)$, $|S| \le k$, that activates at least *l* vertices in *G*.

<u>Our Results:</u>

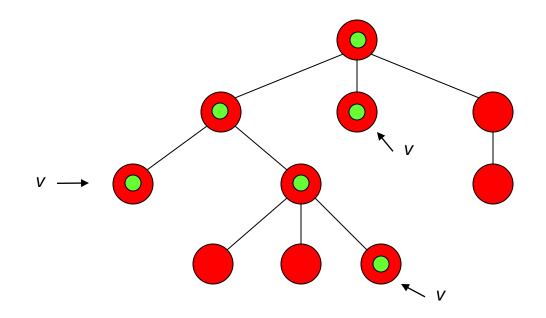
- For a graph with *n* vertices and treewidth *w*:
 - TSS can be solved in $n^{O(w)}$
 - TSS cannot be solved in $n^{o(\sqrt{w})}$

treewidth governs the complexity of TSS

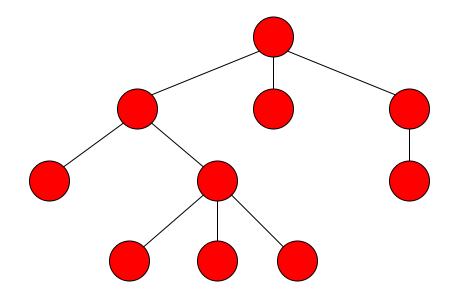
- A tree decomposition of G is a tree whose nodes are subgraphs of G s.t.:
 - 1. The union of all subgraphs is G.



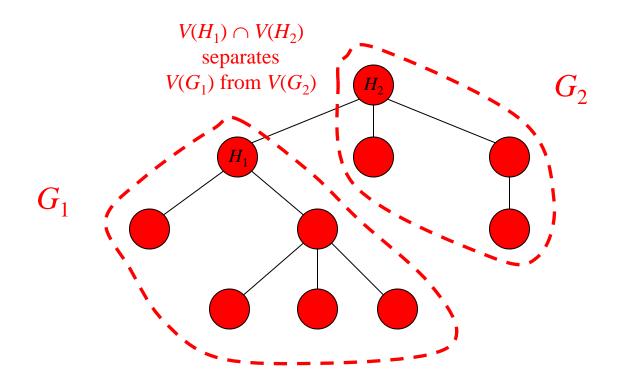
- A tree decomposition of G is a tree whose nodes are subgraphs of G s.t.:
 - 1. The union of all subgraphs is G.
 - 2. For all $v \in V(G)$, the collection of nodes containing v is connected.



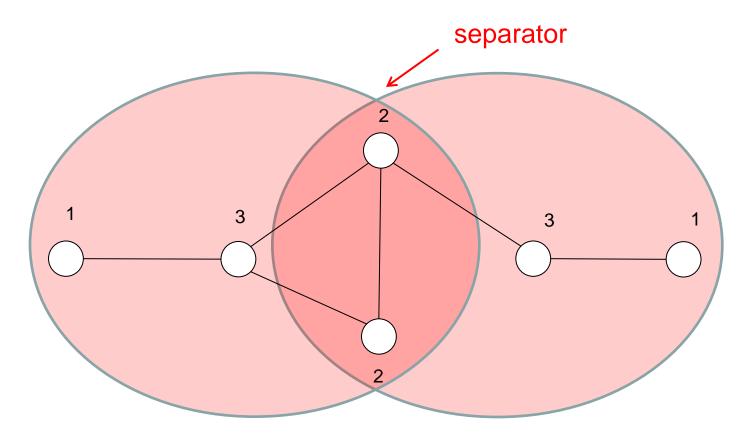
- width of decomposition := max |V(H)| over all subgraphs (tree nodes) H
- treewidth of $G := \min$ width tree-decomposition of G



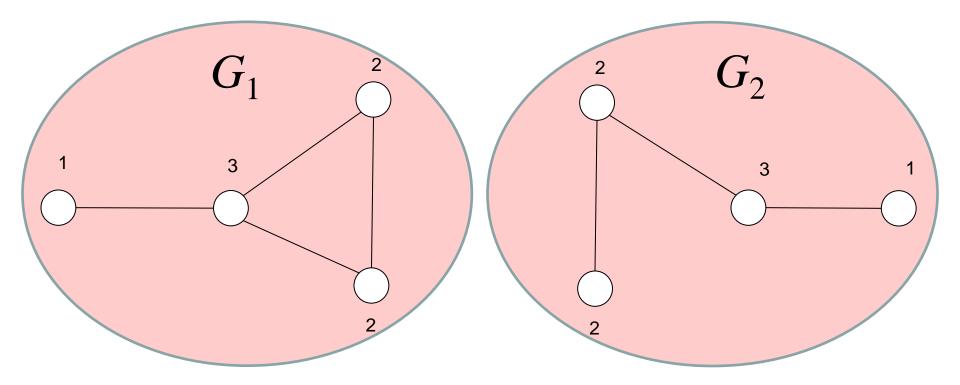
- Separation property of tree-decompositions
- Dynamic-programming in bottom-up fashion



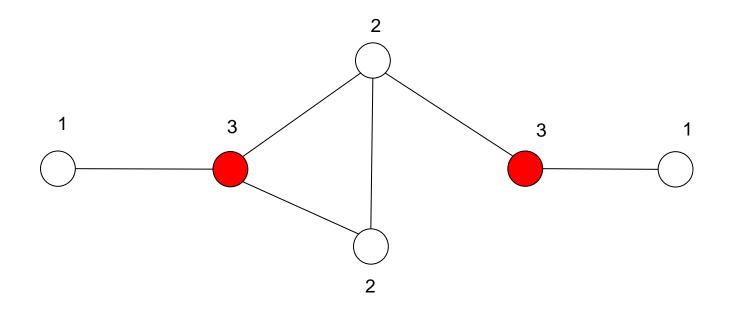
• Use dynamic-programming in bottom-up fashion



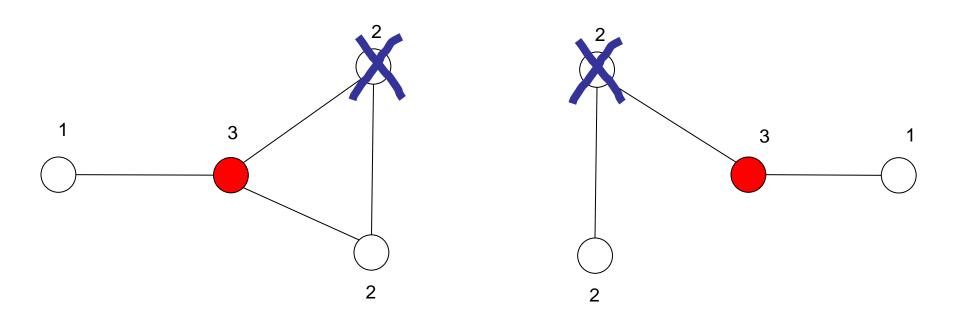
- Use dynamic-programming in bottom-up fashion
 - Combine solutions from G_1 and G_2 into solutions for G



- Problem 1
 - Solution in *G* is not a solution in $G_1 + G_2$

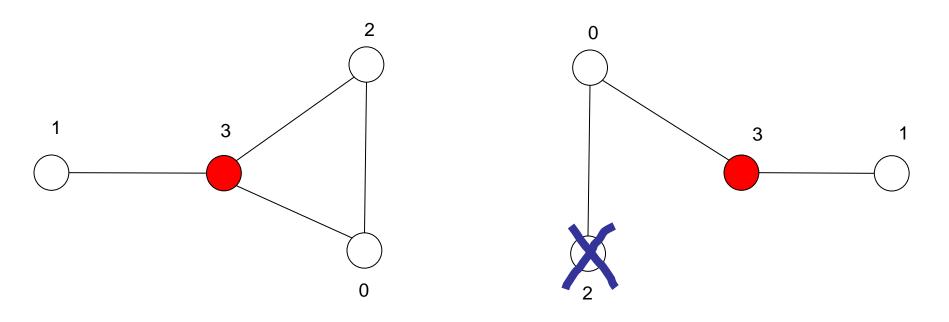


- Problem 1
 - Solution in *G* is not a solution in $G_1 + G_2$



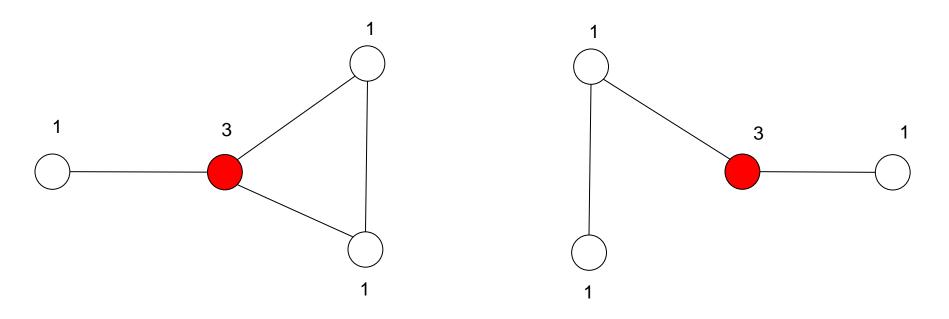
• Solution:

- Try all possible thresholds at the separator
- Merge if they sum-up to (at-least) original thresholds

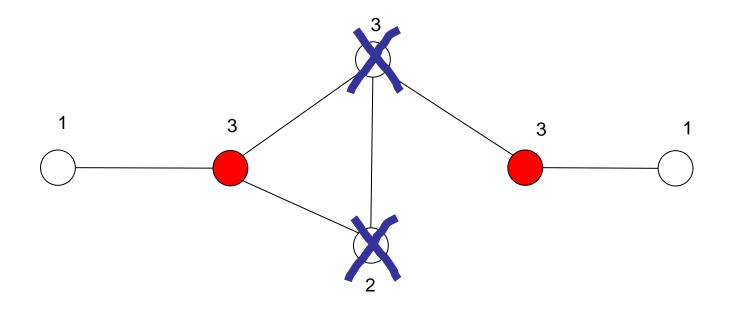


• Solution:

- Try all possible thresholds at the separator
- Merge if they sum-up to (at-least) original thresholds

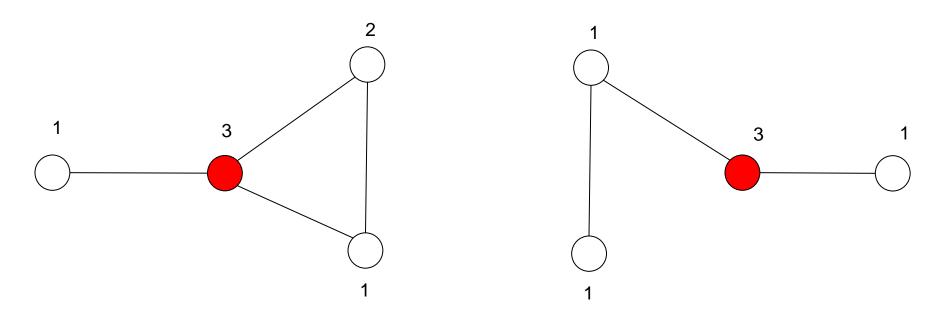


- Problem 2
 - Solution in $G_1 + G_2$ is not a solution in G



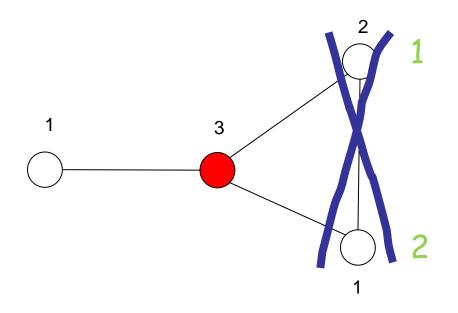
• Problem 2

- Solution in $G_1 + G_2$ is not a solution in G
 - Vertices in G_1 and G_2 get activated in different order **deadlock** in G



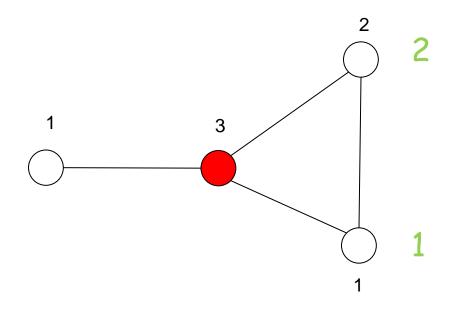
• Solution:

- Try all possible activation orderings at the separator.
- Merge solutions which have the same order.



• Solution:

- Try all possible activation orderings at the separator.
- Merge solutions which have the same order.

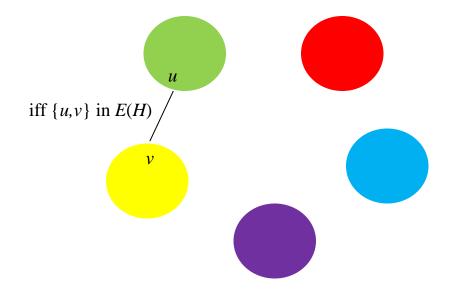


• Algorithm outline:

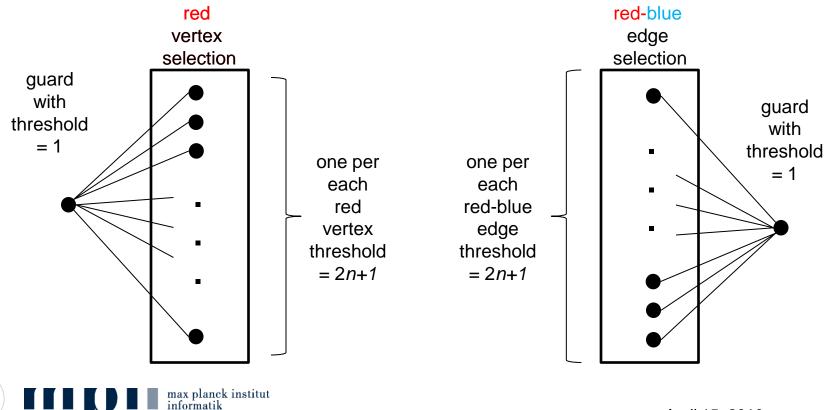
- 1. Try all possible thresholds at the separator $= n^{O(w)}$
- 2. Try all possible activation orderings at the separator = $w^{O(w)}$
- 3. Merge solutions s.t.:
 - Thresholds sum up (at least) to original
 - Same ordering
- 4. Total computation on each node $= n^{O(w)}$
- 5. Total time complexity : O(n) nodes * $n^{O(w)} = n^{O(w)}$

- <u>Theorem [Chen et al. CCC '04]</u>: *k*-Clique cannot be solved in $n^{o(k)}$ unless all problems in **SNP** can be solved in sub-exponential time.
- Reduce *k*-Clique to TSS in poly-time s.t.:
 - An instance (*H*,*k*) of *k*-Clique will reduced to an instance of (*G*,*s*) of TSS s.t. *tw*(*G*) = O(*k*²).
- Combined with theorem above we get:
 - TSS cannot be solved in $n^{o(w)}$ unless all problems in **SNP** can be solved in sub-exponential time.
- <u>Intermediate problem</u>: Multicolored Clique.

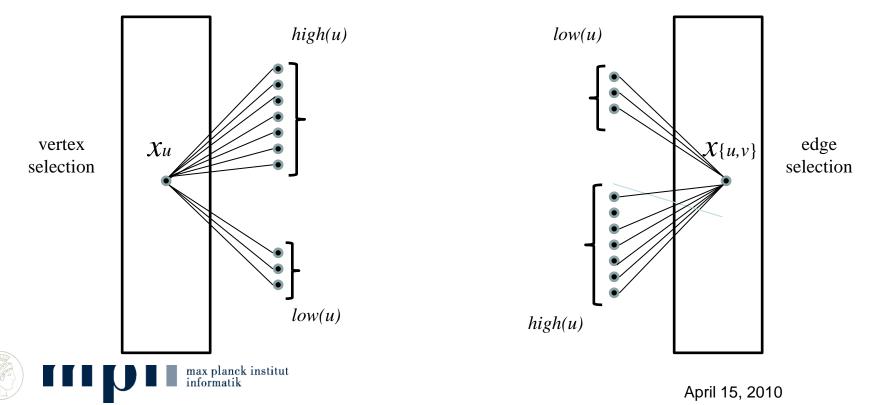
- Lemma [folklore]: An instance (*H*,*k*) of *k*-Clique can be reduced to an instance (*H*',*k*) of *k*-Multicolored Clique, and vice-versa.
 - \leq : Remove all edges in each color class, then remove colors.
 - \Rightarrow : Create *k* copies of *H*, and add adjacencies in a natural manner:



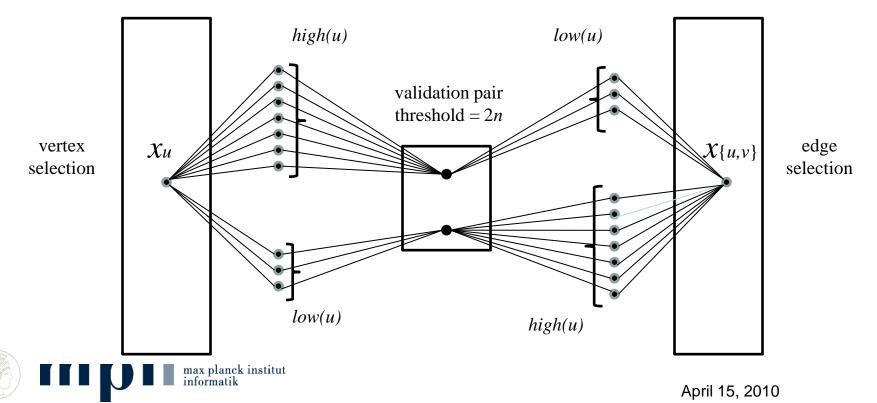
- From *k*-Multicolored Clique to TSS:
 - Selection gadget for each k color class and each $\binom{k}{2}$ edge-color class.



- From *k*-Multicolored Clique to TSS:
 - Assign each vertex unique ids
 - $low(v) \in \{1,...,n\}$ and high(v) := 2n low(v)
 - Add connectors from selection vertices



- From *k*-Multicolored Clique to TSS:
 - Assign each vertex unique ids
 - $low(v) \in \{1,...,n\}$ and high(v) := 2n low(v)
 - Create validation gadgets between vertex and edge selections



- From *k*-Multicolored Clique to TSS:
 - *H* has *k*-multicolored-clique iff *G* has k + k(k-1)/2 target-set
 - Without validation pairs G is a forest
 - $O(k^2)$ validation pairs $\Rightarrow tw(G) = O(k^2)$

