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Target Set Selection

• Model as an activation process in a graph (social network):

• vertices have integer thresholds
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• Marketing on a social network

• Analyzing diffusion processes of ideas or innovations on social networks

• Predicting virus spread over large populations

Target Set Selection
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Target Set Selection

• Instance: Integers k,l and a graph G with thresholds t : V(G) → N

• Goal: Find S  V(G) , |S| ≤ k, that activates at least l vertices in G

• Domingos and Richardson [KDD 2001]

• Introduced diffusion process into CS

• Kempe, Kleinberg and Tardos [KDD 2003, ICALP 2005]

• Inapproximability result of n(1-) for maximizing l, given k

• Approximation when thresholds are uniformly distributed

• Chen [SODA 2008]

• Polylogarithmic inapproximability result for minimizing k, given l

• Poly-time algorithm for trees (worst case thresholds)

Formal Definition

Previous Work:
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Target Set Selection

• Instance: Integers k,l and a graph G with thresholds t : V(G) → N.

• Goal: Find S  V(G) , |S| ≤ k, that activates at least l vertices in G.

• For a graph with n vertices and treewidth w:

• TSS can be solved in nO(w)

• TSS cannot be solved in no(  w)

Formal Definition

Our Results:
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The Treewidth Parameter

• A tree decomposition of G is a tree whose nodes are subgraphs of G s.t.:

1. The union of all subgraphs is G.

G



The Treewidth Parameter

• A tree decomposition of G is a tree whose nodes are subgraphs of G s.t.:

1. The union of all subgraphs is G.

2. For all v  V(G), the collection of nodes containing v is connected.

v

v

v
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The Treewidth Parameter

• width of decomposition := max |V(H)| over all subgraphs (tree nodes) H

• treewidth of G := min width tree-decomposition of G
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The Treewidth Parameter

• Separation property of tree-decompositions

• Dynamic-programming in bottom-up fashion

April 15, 2010
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• Use dynamic-programming in bottom-up fashion

Algorithm for Bounded Treewidth
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• Use dynamic-programming in bottom-up fashion

• Combine solutions from G1 and G2 into solutions for G

Algorithm for Bounded Treewidth
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• Problem 1

• Solution in G is not a solution in G1 + G2

Algorithm for Bounded Treewidth
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• Problem 1

• Solution in G is not a solution in G1 + G2

Algorithm for Bounded Treewidth
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• Solution:

• Try all possible thresholds at the separator

• Merge if they sum-up to (at-least) original thresholds

Algorithm for Bounded Treewidth
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• Solution:

• Try all possible thresholds at the separator

• Merge if they sum-up to (at-least) original thresholds 

Algorithm for Bounded Treewidth
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• Problem 2

• Solution in G1 + G2 is not a solution in G

Algorithm for Bounded Treewidth
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• Problem 2

• Solution in G1 + G2 is not a solution in G

• Vertices in G1 and G2 get activated in different order - deadlock in G

Algorithm for Bounded Treewidth
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• Solution:

• Try all possible activation orderings at the separator.

• Merge solutions which have the same order.

Algorithm for Bounded Treewidth
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• Solution:

• Try all possible activation orderings at the separator. 

• Merge solutions which have the same order.

Algorithm for Bounded Treewidth
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• Algorithm outline:

1. Try all possible thresholds  at the separator  = nO(w)

2. Try all possible activation orderings at the separator = wO(w)

3. Merge solutions s.t.:

• Thresholds sum up (at least) to original

• Same ordering

4. Total computation on each node  = nO(w)

5. Total time complexity : O(n) nodes * nO(w) = nO(w)

Algorithm for Bounded Treewidth
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• Theorem [Chen et al. CCC ‘04]: k-Clique cannot be solved in no(k)

unless all problems in SNP can be solved in sub-exponential time. 

• Reduce k-Clique to TSS in poly-time s.t.:

• An instance (H,k) of k-Clique will reduced to an instance of (G,s) of 

TSS s.t. tw(G) = O(k2).

• Combined with theorem above we get:

• TSS cannot be solved in no(  w) unless all problems in SNP can be 

solved in sub-exponential time. 

Lower Bounds
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• Intermediate problem: Multicolored Clique.



• Lemma [folklore]: An instance (H,k) of k-Clique can be reduced to an 

instance (H’,k) of k-Multicolored Clique, and vice-versa. 

•  :  Remove all edges in each color class, then remove colors.

• :   Create k copies of H, and add adjacencies in a natural manner:

Lower Bounds
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• From k-Multicolored Clique to TSS:

• Selection gadget for each k color class and each ( ) edge-color class.

Lower Bounds
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Lower Bounds
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• From k-Multicolored Clique to TSS:

• Assign each vertex unique ids

• low(v) {1,...,n} and high(v) := 2n - low(v)

• Add connectors from selection vertices



• From k-Multicolored Clique to TSS:

• Assign each vertex unique ids

• low(v) {1,...,n} and high(v) := 2n - low(v)

• Create validation gadgets between vertex and edge selections

Lower Bounds
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• From k-Multicolored Clique to TSS:

• H has k-multicolored-clique iff G has k+ k(k-1)/2 target-set

• Without validation pairs G is a forest

• O(k2) validation pairs   tw(G) = O(k2) 

Lower Bounds
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