
Outline
Introduction

Instance Easiness
Adaptivity in general

Adaptivity in Clustering
Coda

Adaptive Analysis of Algorithms

Vlad Estivill-Castro

March 29, 2010

Adaptive Analysis of Algorithms 1 Vlad Estivill-Castro



Outline
Introduction

Instance Easiness
Adaptivity in general

Adaptivity in Clustering
Coda

Introduction
Motivation
Adaptive Algorithm

Instance Easiness
measures of disorder
ranking measures of disorder

Adaptivity in general
Models
Links to parameterized complexity

Adaptivity in Clustering

Coda

Adaptive Analysis of Algorithms 2 Vlad Estivill-Castro



Outline
Introduction

Instance Easiness
Adaptivity in general

Adaptivity in Clustering
Coda

Motivation
Adaptive Algorithm

Sorting is a core problem

Central to the debate about models of computation

I comparison-based vs sorting integers

I worst-case vs expected case (maybe best case)

I lower bounds and optimality (O(), Ω(), Θ()).

I problems vs algorithm

I internal memory vs external memory

I parallel vs sequential
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Sorting is a core problem (cont)

An ideal case to initiate students on the analysis and design of
algorithms

I (and data structures).

I theoretical and experimental algorithmics

I algorithmic engineering (Quicksort / Insertion Sort)

Adaptive Analysis of Algorithms 4 Vlad Estivill-Castro



Outline
Introduction

Instance Easiness
Adaptivity in general

Adaptivity in Clustering
Coda

Motivation
Adaptive Algorithm

A focus on the instances

A-Sort [3] seems to be the origin of the notion of ‘adaptive’ [2].

I Verifying an input sequence is sorted is Θ(n) time.

I Sorting (comparison-based) is Θ(n log n).

I Both statements can be seen as remarks about the expected
case (just the distribution of instances is extreme).

Should not need to do as much work if there is only a bit of
disorder to remove.
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A bi-dimensional (multi-dimensional) view on algorithm
complexity

Adaptive algorithm

I (originally not a view on problem complexity)
I the complexity of the algorithm is a smoothly growing

function
I of a measure of instance-hardness (disorder)
I the size of the input
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Inversions

I number of inversions.

I Let Inv(π) = Inv(π, Id) (or Kendall-Tau) [distance, measure
of disorder, measure of pre-sortedness, right-invariant metric
Inv(π, σ) = Inv(π ◦ τ, σ ◦ τ)]

Inv(X = 〈x1, x2, . . . xn〉) = ‖(i , j)|i < j and xi > xj‖

Minimum number of adjacent swaps to bring the sequence into
sorted order.
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Insertion Sort

Straight Insertion Sort (the insertion data structure is an
array)

I Inv(x) + n − 1 comparisons

I Inv(x) + 2n − 1 data moves

Improve the data structure (just place a finger and count only
comparisons)

n log(1 + Inv(X )/n).
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Lower bounds

I below(z , n,M) = {X ∈ Sn | |X | = n and M(X ) ≤ z}
I in the comparison-based model of computation the

comparison tree has height at least Ω(log ‖below(z , n,M)‖).

Optimal adaptivity in the worst-case

Ts(X ) ∈ O(max{|X |, log ‖below(z , n,M)‖).
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Instance easiness can be measured in many ways

Operational

I Exchanges (swaps) – minimum number of exchanges to bring
the sequence into sorted order.

I Rem – minimum number of removals to eave something sorted

I Runs (step downs) — passes for external sort
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Hierarchy of measures of disorder

M1 is algorithmicly finer than M2 if and only if
whenever A is optimal adaptive with respect to M1, then it is also
optimally adaptive with respect to M2.
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Where things were left

I Optimal algorithm (comparisons) for finest measure of
disorder [Moffat & Petersson]

I Does there exists a minimal element for the hierarchy ?
I Does there exist an optimal algorithm for the optimum?

I Iacono 2001, Bădoiu & Demain 2004, Bădoiu, Cole, Demaine,
Iacono 2006.
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Adaptivity —Expected case

I Makes perfect sense for randomized algorithms

I Expectation [ required resources ] (time/space) is a smoothly
growing function of the instance easiness.
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Adaptive Analysis

|X | vs M(X ) 0 1 2 . . . k

1
2
3
4
. . .
n f (n, k)

Objectives

I f (n, k) monotonicly increasing for each fixed n

I proportional to
below(z , n,M) = {X ∈ P | |X | = n and M(X ) ≤ k}
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Parameterized Complexity

|X | vs k 0 1 2 . . . k

1
2
3
4
. . .
n pol(n)f (k)

Objectives

I Understand the frontier of hardness

I avenue to break intractability
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Adaptivity in NP Problems

I below(z , n,M) = {X ∈ P | |X | = n and M(X ) ≤ z}
I very close notion to parameterized complexity

I z is the parameter, M is the function of instance easiness
(does this lead to the next chapter in parameterized
complexity?)

I recall the argument about hierarchies of measures
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Contrast between adaptive algorithms and parameterized
algorithms

Vertex Cover

I Let G =(V ,E ), and we measure instance easiness as

∑
Connected ComponentC

n−1∑
i=1

i · ] vertices of degree i
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Adaptivity vs parameterization

I Notion of measure of instance easiness (could be the
parameter)

I The maximum value of the measure is k << n.

I Adaptivity seems to make more sense in the class P.

I Adaptive makes sense for any resource (time, number of
processors, space, number of messages) proportional to
instance easiness.
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Adaptivity vs parameterization

Illustration

I Measures of structural simplicity

I Tree-With (how tree like), Path-width (how Path-like), genus
(how planar like).

I “Decision” version vs “Optimization” version
I Tricks also used in the adaptive case (because computing the

measure may be as hard as solving the problem).

1. for a scheme k = 0, . . . ,max{M(X )} Apply algorithm for
M(X ) = k .

2. If A1 and A2 are two algorithms, respectively optimal with
respect to measures of easiness M1 and M2, then an algorithm
that runs them alternatively is optimum with respect to both
measures.
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Distance-based and Representative-based Clustering

I Given X set of n points (vectors ~xi ∈ <d) find a partition
C1,C2, . . .Ck (

⋃
Ci = X ) that minimizes the loss (error).

I Total square error: Find representatives ~c1, . . .~ck such that

k∑
j=1

∑
~x∈Cj

dist(~x , rep[Cj ])
2

I Total error: Find representatives ~c1, . . .~ck such that

k∑
j=1

∑
~x∈Cj

dist(~x , rep[Cj ])

I Medoids (discrete case): ~xi ∈ X .
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Geometric difference of criteria
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A consensus problem

The case k = 1 and dist=Euclid.
I Total square error: ∑

~x∈Cj

dist(~x , rep[Cj ])
2

I Solution is center of mass (Minimizes distortion).

I Total error: ∑
~x∈Cj

dist(~x , rep[Cj ])

I Fermat-Webber Problem (Geometric Median).
I No solution by digital computers.

I Discrete case: C ⊂ X
I Problem is in XP (Test all subsets of size k).
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Status of clustering from adaptive analysis

Clusterability
I Notions of how easy (instance easiness) is to cluster a

particular instance X in k clusters [1]

1. Center-perturbation clusterability.
2. Worst-pair-ratio clusterability.
3. Separability clusterability.
4. Variance-ration clusterability.
5. Clusterability to a target cluster.

I Type A Results: Clusterability for one notion may not mean
clusterability for the other.

I Type B Results: If an instance has high clusterability for one
measure, then it is ”polynomial” to find a ”good” clustering.

I Type C Results: Computing ”clusterability” is NP-Hard
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Center-perturbation clusterability

Center-based clustering

I Centers (and thus clusterings) {~c1,~2, . . . ,~ck} are ε-close to
{~c ′1,~c ′2, . . . ,~c ′k} if ∀j‖~cj − ~c ′j‖ ≤ ε.

I X is (ε, δ, k)-clusterable (for k ≥ 1 and ε, δ ≥ 0) if ∀C a
center-based clustering of X that is ε-close to some optimal
clustering

L(C ) ≤ (1 + δ)OPTL,k(X ).

Illustration:

1. L(C ) =
∑k

j=1

∑
~x∈Cj

Euclid(~x , rep[Cj ])
2.

2. OPTL,k(X ) = min{L(C ) | C is clustering of X}.
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Type B Result:

If X is (rad(X )/
√

(l), δ)-center perturbation clusterable, then
there is an algorithm that runs in polynomial time in n and outputs
a cluster C so that

L(C ) ≤ (1 + δ)OPTL,k(X ).

I Complexity is actually O(nlk), i.e. polynomial only for fixed k
(and fixed l).

I rad(X ) is the radius of the minimum sphere that contains X .
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Algorithm:

1. CA ←; L← all k tuples with entries an l-sequence of elements
of X . /* A sample with replacement of kl elements from X */

2. for each element of L:

2.1 find the center of mass cj of each l-sequence

2.2 find the clustering Ĉ induced by the cj ’s (Voronoi partition)

2.3 if CA = or L(Ĉ ) < L(CA), then CA ← Ĉ .

3. return CA
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Worst-pair-ratio clusterability

I For clustering C of X ,

split(C ) = min{dist(~x , ~y) | ~x ∈ Ci , ~y ∈ Cj , i 6= j}

width(C ) = max{dist(~x , ~y) | ~x ∈ Ci , ~y ∈ Ci}

I “Cluster-quality” of a clustering C with respect to X

WPR(C ,X ) =
split(C )

width(C )
.

I WPRk clusterability

WPRk(X ) = max{WPR(C ,X ) | C is k clustering of X}.
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Type B Result:

If WPRk(X ) ≥ 1 for some k > 2, we can find a k-clustering C
with maximum split over width ration in O(n2 log n) time where
n = |X |.

1. Algorithms is single-linkage clustering until k components.

2. Correctness: If there is a clustering C (with k non-trivial
clusters!) such that width(C ) < split(C ), then there is only
one such clustering.
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Separability clusterability

Drop in loss relative to number k of clusters.

I The k-means loss

Lk(C ,X ) =
k∑

j=1

∑
~x∈Cj

Euclid(~x , rep[Cj ])
2.

I The set X is (k,ε)-separable if

OPTC is k clustering[Lk(C ,X )]

≤ ε OPTC ′ is k − 1 clustering[Lk−1(C ′,X )]

I The separability Sk(X ) ∈ [0, 1) is
inf{ε > 0 | X is ε− separable} (smaller value, easier to
cluster).
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Type B Result:

If X is (2,ε2)-separable, then a 2-clustering with k-means loss

Lk(C ,X ) ≤
OPTC is 2 clustering[L2(C ,X )]

(1− ρ)

can be found with probability 1− O(ρ) in time O(dn) where
ρ = Θ(ε2).

1. Approximation algorithm.

2. Probabilistic algorithm.

3. Theoretical algorithm.
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Variance-ratio Clusterability

I Variance of X = σ2(X ) = 1
‖X‖

∑
~x∈X ‖~x −mean(X )‖2.

I k-clustering C = {X1,X2, . . . ,Xk}, proportion
pi = ‖Xi‖/‖X‖.

I Between cluster variance

BC (X ) =
k∑

j=1

pi‖mean(Xi )−mean(X )‖2.

I Within cluster variance WC (X ) =
∑k

j=1 piσ
2(Xi ).

I Variance-Ratio Clusterability

VRk(X ) = max
C is a k clustering

BC (X )

WC (X )
.
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Type B Result:

Observations:

I σ2(X ) = WC (X ) + BC (X ).

I nWC (X ) = k-means loss = Lk(C ,X ).

Therefore, VR2(X ) = 1
S2(X ) − 1 for all X .

I Equivalence of measures of clusterability for k = 2.

I Algorithms for separability also work for variance-ratio.
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Status of clustering from parameterized complexity

More common in the context of a graph G (V ,E ).

I Sometimes weights for edges w(e) with e ∈ E .

I r -Dominating Set

I Is there a set C ⊂ V of size k (‖C‖ = k) so that ∀v ∈ V
there is c ∈ C so that dist(v , c) < r .

I Vanilla Dominating Set (w(e) = 1, ∀e and r = 1) is
unlikely to be FPT;

I but FPT for special cases (planar).

I However, few implementations.
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Connexion between adaptivity and parameterized
complexity

Determine the complexity:

I Instance: A set X of n vectors with “measure” of
clusterability k.

I Parameter: k.

I Question: Does X have a clustering of “quality” k.

Investigate combinations of “measures” and “quality” (or is the
problem trivial).
Produce adaptive algorithms (optimization version).
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Specific Open Problem

In the context of a graph G (V ,E ).

I Sometimes weights for edges w(e) with e ∈ E .

I r -Dominating Set

I Is there a set C ⊂ V of size k (‖C‖ = k) so that ∀v ∈ V
there is c ∈ C so that dist(v , c) < r .

I In the special case the the clusterability is high (for example,
the worst-pair-ratio larger than 1 implies polynomial time).

I FPT? where the parameter k is (inversely) related to the
clusterability (Conjecture: FPT for instances with
clusterability larger than 1/k).

I Deliver good implementations.
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Adaptivity, does it matter?

I For sorting, the additional machinery usually causes too much
overhead.

I Closest to best engineered approach (carefully engineer
Quicksort until instances are small enough, then apply a
pass of Insertion sort).

I Eradicate Bubble Sort
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Hierarchicly finest measure

I For measures of disorder
I For competitive algorithms (Lopez-Ortiz discussion on LRU)

I need suitable model of optimality

I For other environments of adaptive algorithms
I Shortest Path (Dijkstra)
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Other problems

Erik Demaine and several others

I Searching

I Sets

I Curves

I Integrals
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Finding M(X )

I Are there problems where finding (approximating) M(X ) can
be done much faster than actually solving P.

I A slight variation like the local-search parameterized
complexity that should have sense for NP-Complete problems.
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Thanks
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Question?
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