Adaptive Analysis of Algorithms

Vlad Estivill-Castro

March 29, 2010

(日)

Vlad Estivill-Castro

Adaptive Analysis of Algorithms

Outline

Introduction Instance Easiness Adaptivity in general Adaptivity in Clustering Coda

Introduction

Motivation Adaptive Algorithm

Instance Easiness

measures of disorder ranking measures of disorder

Adaptivity in general

Models Links to parameterized complexity

Adaptivity in Clustering

Coda

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Motivation Adaptive Algorithm

イロン 不同 とくほう イロン

Vlad Estivill-Castro

Sorting is a core problem

Central to the debate about models of computation

- comparison-based vs sorting integers
- worst-case vs expected case (maybe best case)
- lower bounds and optimality $(O(), \Omega(), \Theta())$.
- problems vs algorithm
- internal memory vs external memory
- parallel vs sequential

Motivation Adaptive Algorithm

イロン 人間と イヨン イヨン

Vlad Estivill-Castro

Sorting is a core problem (cont)

An ideal case to initiate students on the analysis and design of algorithms

- (and data structures).
- theoretical and experimental algorithmics
- algorithmic engineering (Quicksort / Insertion Sort)

Motivation Adaptive Algorithm

イロト 不得 とう アイロト

Vlad Estivill-Castro

A focus on the instances

A-Sort [3] seems to be the origin of the notion of 'adaptive' [2].

- Verifying an input sequence is sorted is $\Theta(n)$ time.
- Sorting (comparison-based) is $\Theta(n \log n)$.
- Both statements can be seen as remarks about the expected case (just the distribution of instances is extreme).

Should not need to do as much work if there is only a bit of disorder to remove.

Motivation Adaptive Algorithm

イロト 不得 とくほと くほとう

Vlad Estivill-Castro

A bi-dimensional (multi-dimensional) view on algorithm complexity

Adaptive algorithm

- (originally not a view on problem complexity)
- the complexity of the algorithm is a smoothly growing function
 - of a measure of instance-hardness (disorder)
 - the size of the input

Motivation Adaptive Algorithm

Inversions

- number of inversions.
- Let Inv(π) = Inv(π, Id) (or Kendall-Tau) [distance, measure of disorder, measure of pre-sortedness, right-invariant metric Inv(π, σ) = Inv(π ∘ τ, σ ∘ τ)]

$$Inv(X = \langle x_1, x_2, \dots x_n \rangle) = \|(i, j)|i < j \text{ and } x_i > x_j\|$$

Minimum number of adjacent swaps to bring the sequence into sorted order.

< □ > < 同 > < 回 > < 回 > < 回 > = □

Motivation Adaptive Algorithm

Illustration

Motivation Adaptive Algorithm

Insertion Sort

 $\label{eq:straight} \begin{array}{l} {\rm Straight\ Insertion\ Sort\ (the\ insertion\ data\ structure\ is\ an} \\ {\rm array}) \end{array}$

- Inv(x) + n 1 comparisons
- Inv(x) + 2n 1 data moves

Improve the data structure (just place a finger and count only comparisons)

 $n\log(1+\ln v(X)/n).$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

Vlad Estivill-Castro

Motivation Adaptive Algorithm

Lower bounds

- ▶ below(z, n, M) = { $X \in S_n \mid |X| = n$ and $M(X) \le z$ }
- in the comparison-based model of computation the comparison tree has height at least Ω(log ||below(z, n, M)||).

Optimal adaptivity in the worst-case

$$T_s(X) \in O(\max\{|X|, \log \|below(z, n, M)\|).$$

Vlad Estivill-Castro

measures of disorder ranking measures of disorder

Instance easiness can be measured in many ways

Operational

- Exchanges (swaps) minimum number of exchanges to bring the sequence into sorted order.
- Rem minimum number of removals to eave something sorted
- ► *Runs* (step downs) passes for external sort

イロト 不得 トイヨト イヨト 二日

measures of disorder ranking measures of disorder

Hierarchy of measures of disorder

 M_1 is algorithmicly finer than M_2 if and only if whenever A is optimal adaptive with respect to M_1 , then it is also optimally adaptive with respect to M_2 .

イロト 不得 とくほと くほとう

measures of disorder ranking measures of disorder

Illustration

Adaptive Analysis of Algorithms

। 🕨 🚊 🛷 ९ ९ Vlad Estivill-Castro

(日)

measures of disorder ranking measures of disorder

Where things were left

- Optimal algorithm (comparisons) for finest measure of disorder [Moffat & Petersson]
- Does there exists a minimal element for the hierarchy ?
- Does there exist an optimal algorithm for the optimum?
 - Iacono 2001, Bădoiu & Demain 2004, Bădoiu, Cole, Demaine, Iacono 2006.

イロン 不同 とくほう イロン

Models Links to parameterized complexity

Adaptivity — Expected case

- Makes perfect sense for randomized algorithms
- Expectation [required resources] (time/space) is a smoothly growing function of the instance easiness.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Models Links to parameterized complexity

Adaptive Analysis

X vs $M(X)$	0	1	2		k
1					
2					
3					
4					
п		1	f(n,	k)	
			•	-	

Objectives

- f(n, k) monotonicly increasing for each fixed n
- ▶ proportional to below(z, n, M) = { $X \in P \mid |X| = n$ and $M(X) \le k$ }

Adaptive Analysis of Algorithms

Models Links to parameterized complexity

Parameterized Complexity

Objectives

- Understand the frontier of hardness
- avenue to break intractability

(D) (A) (A) (A) (A) (A)

Models Links to parameterized complexity

Adaptivity in NP Problems

- ▶ below $(z, n, M) = \{X \in P \mid |X| = n \text{ and } M(X) \leq z\}$
- very close notion to parameterized complexity
- z is the parameter, M is the function of instance easiness (does this lead to the next chapter in parameterized complexity?)
- recall the argument about hierarchies of measures

Models Links to parameterized complexity

イロト 不得 とう アイロト

Vlad Estivill-Castro

Contrast between adaptive algorithms and parameterized algorithms

Vertex Cover

• Let G = (V, E), and we measure instance easiness as

$$\sum_{\text{Connected Component} C} \sum_{i=1}^{n-1} i \cdot \ \sharp \text{ vertices of degree i}$$

Models Links to parameterized complexity

Adaptivity vs parameterization

- Notion of measure of instance easiness (could be the parameter)
- The maximum value of the measure is $k \ll n$.
- Adaptivity seems to make more sense in the class *P*.
- Adaptive makes sense for any resource (time, number of processors, space, number of messages) proportional to instance easiness.

イロン 不同 とくほう イロン

Models Links to parameterized complexity

Adaptivity vs parameterization

Illustration

- Measures of structural simplicity
- Tree-With (how tree like), Path-width (how Path-like), genus (how planar like).
- "Decision" version vs "Optimization" version
- Tricks also used in the adaptive case (because computing the measure may be as hard as solving the problem).
 - 1. for a scheme $k = 0, ..., \max\{M(X)\}$ Apply algorithm for M(X) = k.
 - 2. If A_1 and A_2 are two algorithms, respectively optimal with respect to measures of easiness M_1 and M_2 , then an algorithm that runs them alternatively is optimum with respect to both measures.

Distance-based and Representative-based Clustering

- Given X set of n points (vectors $\vec{x}_i \in \Re^d$) find a partition $C_1, C_2, \ldots C_k$ ($\bigcup C_i = X$) that minimizes the loss (error).
- ▶ Total square error: Find representatives $\vec{c}_1, \ldots, \vec{c}_k$ such that

$$\sum_{j=1}^k \sum_{ec{x} \in \mathcal{C}_j} dist(ec{x}, rep[\mathcal{C}_j])^2$$

▶ Total error: Find representatives $\vec{c}_1, \ldots, \vec{c}_k$ such that

$$\sum_{j=1}^{k} \sum_{\vec{x} \in C_j} dist(\vec{x}, rep[C_j])$$

• Medoids (discrete case): $\vec{x_i} \in X$.

Adaptive Analysis of Algorithms

Vlad Estivill-Castro

Illustration

Adaptive Analysis of Algorithms

। 🕨 🚊 🛷 ९ ९ Vlad Estivill-Castro

Geometric difference of criteria

A consensus problem

The case k = 1 and dist=Euclid.

Total square error:

$$\sum_{\vec{x} \in C_j} dist(\vec{x}, rep[C_j])^2$$

Solution is center of mass (Minimizes distortion).

Total error:

$$\sum_{\vec{x}\in C_j} dist(\vec{x}, rep[C_j])$$

- Fermat-Webber Problem (Geometric Median).
- No solution by digital computers.
- Discrete case: $C \subset X$
 - Problem is in XP (Test all subsets of size k).

Adaptive Analysis of Algorithms

Status of clustering from adaptive analysis

- Clusterability
 - Notions of how easy (instance easiness) is to cluster a particular instance X in k clusters [1]
 - 1. Center-perturbation clusterability.
 - 2. Worst-pair-ratio clusterability.
 - 3. Separability clusterability.
 - 4. Variance-ration clusterability.
 - 5. Clusterability to a target cluster.
 - Type A Results: Clusterability for one notion may not mean clusterability for the other.
 - Type B Results: If an instance has high clusterability for one measure, then it is "polynomial" to find a "good" clustering.
 - ► Type C Results: Computing "clusterability" is NP-Hard

Center-perturbation clusterability

Center-based clustering

- ▶ Centers (and thus clusterings) $\{\vec{c}_1, \vec{2}, \dots, \vec{c}_k\}$ are ϵ -close to $\{\vec{c}'_1, \vec{c}'_2, \dots, \vec{c}'_k\}$ if $\forall j \| \vec{c}_j \vec{c}'_j \| \le \epsilon$.
- X is (ǫ, δ, k)-clusterable (for k ≥ 1 and ǫ, δ ≥ 0) if ∀C a center-based clustering of X that is ǫ-close to some optimal clustering

$$\mathcal{L}(C) \leq (1+\delta)OPT_{\mathcal{L},k}(X).$$

Illustration:

1.
$$\mathcal{L}(C) = \sum_{j=1}^{k} \sum_{\vec{x} \in C_j} Euclid(\vec{x}, rep[C_j])^2$$
.
2. $OPT_{\mathcal{L},k}(X) = \min{\{\mathcal{L}(C) \mid C \text{ is clustering of } X\}}.$

Type B Result:

If X is $(rad(X)/\sqrt{(l)}, \delta)$ -center perturbation clusterable, then there is an algorithm that runs in polynomial time in *n* and outputs a cluster C so that

$$\mathcal{L}(C) \leq (1+\delta)OPT_{\mathcal{L},k}(X).$$

- Complexity is actually O(n^{lk}), i.e. polynomial only for fixed k (and fixed l).
- rad(X) is the radius of the minimum sphere that contains X.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Algorithm:

- 1. $C_A \leftarrow$; $L \leftarrow$ all k tuples with entries an *I*-sequence of elements of X. /* A sample with replacement of kl elements from X */
- 2. for each element of L:
 - 2.1 find the center of mass c_j of each *l*-sequence
 - 2.2 find the clustering \hat{C} induced by the c_j 's (Voronoi partition)
 - 2.3 if $C_A = \text{ or } \mathcal{L}(\hat{C}) < \mathcal{L}(C_A)$, then $C_A \leftarrow \hat{C}$.
- 3. return C_A

Worst-pair-ratio clusterability

▶ For clustering *C* of *X*,

$$split(C) = min\{dist(\vec{x}, \vec{y}) \mid \vec{x} \in C_i, \vec{y} \in C_j, i \neq j\}$$

$$\mathit{width}(\mathit{C}) = \max\{\mathit{dist}(ec{x},ec{y}) \mid ec{x} \in \mathit{C}_i, ec{y} \in \mathit{C}_i\}$$

"Cluster-quality" of a clustering C with respect to X

$$WPR(C, X) = \frac{split(C)}{width(C)}.$$

WPR_k clusterability

 $WPR_k(X) = \max\{WPR(C, X) \mid C \text{ is } k \text{ clustering of } X\}.$

Adaptive Analysis of Algorithms

Type B Result:

If $WPR_k(X) \ge 1$ for some k > 2, we can find a k-clustering C with maximum split over width ration in $O(n^2 \log n)$ time where n = |X|.

- 1. Algorithms is single-linkage clustering until k components.
- Correctness: If there is a clustering C (with k non-trivial clusters!) such that width(C) < split(C), then there is only one such clustering.

< □ > < 同 > < 回 > < 回 > < 回 > = □

Separability clusterability

Drop in loss relative to number k of clusters.

The k-means loss

$$\mathcal{L}_k(C,X) = \sum_{j=1}^k \sum_{ec{x} \in \mathcal{C}_j} \textit{Euclid}(ec{x},\textit{rep}[\mathcal{C}_j])^2.$$

• The set X is (k,ϵ) -separable if

$$OPT_{C \text{ is } k \text{ clustering}}[\mathcal{L}_{k}(C, X)] \\ \leq \epsilon OPT_{C' \text{ is } k-1 \text{ clustering}}[\mathcal{L}_{k-1}(C', X)]$$

Adaptive Analysis of Algorithms

Type B Result:

If X is $(2,\epsilon^2)$ -separable, then a 2-clustering with k-means loss

$$\mathcal{L}_k(C,X) \leq rac{OPT_C ext{ is 2 clustering}[\mathcal{L}_2(C,X)]}{(1-
ho)}$$

can be found with probability $1 - O(\rho)$ in time O(dn) where $\rho = \Theta(\epsilon^2)$.

- 1. Approximation algorithm.
- 2. Probabilistic algorithm.
- 3. Theoretical algorithm.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Variance-ratio Clusterability

- Variance of $X = \sigma^2(X) = \frac{1}{\|X\|} \sum_{\vec{x} \in X} \|\vec{x} \operatorname{mean}(X)\|^2$.
- ► *k*-clustering $C = \{X_1, X_2, \dots, X_k\}$, proportion $p_i = ||X_i|| / ||X||$.
- Between cluster variance

$$B_\mathcal{C}(X) = \sum_{j=1}^k p_i \|\mathsf{mean}(X_i) - \mathsf{mean}(X)\|^2.$$

- Within cluster variance $W_C(X) = \sum_{j=1}^k p_j \sigma^2(X_j)$.
- Variance-Ratio Clusterability

$$VR_k(X) = \max_{C ext{ is a } k ext{ clustering }} rac{B_C(X)}{W_C(X)}.$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Type B Result:

Observations:

•
$$\sigma^2(X) = W_C(X) + B_C(X).$$

• $nW_C(X) = k$ -means loss $= \mathcal{L}_k(C, X).$
Therefore, $VR_2(X) = \frac{1}{S_2(X)} - 1$ for all X .

- Equivalence of measures of clusterability for k = 2.
- Algorithms for separability also work for variance-ratio.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Status of clustering from parameterized complexity

More common in the context of a graph G(V, E).

- Sometimes weights for edges w(e) with $e \in E$.
- ▶ *r*-Dominating Set
- Is there a set C ⊂ V of size k (||C|| = k) so that ∀v ∈ V there is c ∈ C so that dist(v, c) < r.</p>
- Vanilla DOMINATING SET (w(e) = 1, ∀e and r = 1) is unlikely to be FPT;
- but FPT for special cases (planar).
- However, few implementations.

Connexion between adaptivity and parameterized complexity

Determine the complexity:

- ▶ INSTANCE: A set X of n vectors with "measure" of clusterability k.
- PARAMETER: k.
- ▶ QUESTION: Does X have a clustering of "quality" k.

Investigate combinations of "measures" and "quality" (or is the problem trivial).

Produce adaptive algorithms (optimization version).

Specific Open Problem

In the context of a graph G(V, E).

- Sometimes weights for edges w(e) with $e \in E$.
- ► *r*-Dominating Set
- Is there a set C ⊂ V of size k (||C|| = k) so that ∀v ∈ V there is c ∈ C so that dist(v, c) < r.</p>
- In the special case the the clusterability is high (for example, the worst-pair-ratio larger than 1 implies polynomial time).
- ► FPT? where the parameter k is (inversely) related to the clusterability (Conjecture: FPT for instances with clusterability larger than 1/k).
- Deliver good implementations.

Adaptivity, does it matter?

- For sorting, the additional machinery usually causes too much overhead.
- Closest to best engineered approach (carefully engineer QUICKSORT until instances are small enough, then apply a pass of INSERTION SORT).
- ► Eradicate BUBBLE SORT

< ロ > < 同 > < 回 > < 回 > < □ > <

Hierarchicly finest measure

- For measures of disorder
- For competitive algorithms (Lopez-Ortiz discussion on LRU)

イロン 人間と イヨン イヨン

Vlad Estivill-Castro

- need suitable model of optimality
- For other environments of adaptive algorithms
 - Shortest Path (Dijkstra)

Other problems

Erik Demaine and several others

- Searching
- Sets
- Curves
- Integrals

イロト イポト イヨト イヨト

- ► Are there problems where finding (approximating) M(X) can be done much faster than actually solving P.
- A slight variation like the local-search parameterized complexity that should have sense for NP-Complete problems.

Adaptive Analysis of Algorithms

< ロ > < 同 > < 回 > < 回 > < □ > <

Thanks

Adaptive Analysis of Algorithms

Vlad Estivill-Castro

<ロ> <同> <同> <同> < 同> < 同> < 同> <

Question?

Adaptive Analysis of Algorithms

Vlad Estivill-Castro

ヘロン 人間 とくほと 人ほとう

M. Ackerman and S. Ben-David.

Clusterability: A theoretical study.

In Proceedings of the Twelveth International Conference on Artificial Intelligence and Statistics AISTATS, Clearwater Beach, Florida, USA, 2009. Volume 5 JMLR:W&CP.

- H. Mannila.

Instance Complexity for Sorting and NP-Complete Problems. PhD thesis, University of Helsinki, Department of Computer Science, 1985.

K. Mehlhorn.

Data Structures and Algorithms, Vol 1: Sorting and Searching.

EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin/Heidelberg, 1984, approximate the second second

Adaptive Analysis of Algorithms