
Basic Parameterized Complexity Primer

Rod Downey
Victoria University

Wellington
Cornell, November, 2012



THIS LECTURE:

I Basic Definitions
I Basic Hardness results
I Kernelization lower bounds



PARAMETERIZED COMPLEXITY

I A mathematical idealization is to identify “Feasible” with P.
(I won’t even bother looking at the problems with this.)

I With this assumption, the theory of NP-hardness is an
excellent vehicle for mapping an outer boundary of
intractability, for all practical purposes.

I Indeed, assuming the reasonable current working
assumption that NTM acceptance is Ω(2n), NP-hardness
allows for practical lower bound for exact solution for
problems.

I A very difficult practical and theoretical problem is “How
can we deal with P?”.

I More importantly how can we deal with P − FEASIBLE ,
and map a further boundary of intractability.



I How to explain practical behaviour of combinatorial
problems?

I When does a problem come equipped only with size as the
only aspect of the imput you know? Never!

I Think of iteratively designed objects, any width metric you
have met, genus, etc.

I How to attack a problem via knowledge of the structure of
the input? Are there standard design tools

I How to show that thay are optimal at least up to current
knowledge?



TWO BASIC EXAMPLES

I VERTEX COVER
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k vertex cover? (Vertices
cover edges.)

I DOMINATING SET
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k dominating set? (Vertices
cover vertices.)



I VERTEX COVER is solvable by an algorithm O in time
f (k)|G|, a behaviour we call fixed parameter tractability,
(Specifically 1.28kk2 + c|G|, with c a small absolute
constant independent o f k .)

I Whereas the only known algorithm for DOMINATING SET
is complete search of the possible k -subsets, which takes
time Ω(|G|k ).



I In the below I will mostly talk for convenience about graphs.
I I could just as easily be talking about many other areas.
I In the Computer Journal alone, there is biological, artificial

intelligence, constraint satisfaction, geometric problems,
scheduling, cognitive science, voting, combinatorial
optimzation, phylogeny. Model check is the basis of
Flum-Grohe.



BASIC DEFINITION(S)

I Setting : Languages L ⊆ Σ∗ × Σ∗.

I Example (Graph, Parameter).
I We say that a language L is fixed parameter tractable if

there is a algorithm M, a constant C and a function f such
that for all x , k ,

(x , k) ∈ L iff M(x) = 1 and

the running time of M(x) isf (k)|x |C .



PARAMETERS

I Without even going into details, think of all the graphs you
have given names to and each has a relevant parameter:
planar, bounded genus, bounded cutwidth, pathwidth,
treewidth, degree, interval, etc, etc.

I Also nature is kind in that for many practical problems the
input (often designed by us) is nicely ordered.



POSITIVE TECHNIQUES

I Elementary ones
I Logical metatheorems
I Limits



KERNELIZATION

I I believe that the most important practical technique is
called kernelization.

I pre-processing, or reducing



KARSTEN WEIHE’S TRAIN PROBLEM

I TRAIN COVERING BY STATIONS

Instance: A bipartite graph G = (VS ∪ VT ,E), where the
set of vertices VS represents railway stations and the set of
vertices VT represents trains. E contains an edge
(s, t), s ∈ Vs, t ∈ VT , iff the train t stops at the station s.
Problem: Find a minimum set V ′ ⊆ VS such that V ′ covers
VT , that is, for every vertex t ∈ VT , there is some s ∈ V ′

such that (s, t) ∈ E .



WEIHE’S SOLUTION

I REDUCTION RULE TCS1:
Let N(t) denote the neighbours of t in VS. If N(t) ⊆ N(t ′)
then remove t ′ and all adjacent edges of t ′ from G. If there
is a station that covers t , then this station also covers t ′.

I REDUCTION RULE TCS2:
Let N(s) denote the neighbours of s in VT . If N(s) ⊆ N(s′)
then remove s and all adjacent edges of s from G. If there
is a train covered by s, then this train is also covered by s′.



I European train schedule, gave a graph consisting of
around 1.6 · 105 vertices and 1.6 · 106 edges.

I Solved in minutes.
I This has also been applied in practice as a subroutine in

practical heuristical algorithms.



THE IDEA

I Reduce the parameterized problem to a kernel whose size
depends solely on the parameter

I As compared to the classical case where this process is a
central heuristic we get a provable performance
guarantee.

I We remark that often the performance is much better than
we should expect especially when elementary methods are
used.



VERTEX COVER

I REDUCTION RULE VC1:
Remove all isolated vertices.

I REDUCTION RULE VC2:
For any degree one vertex v , add its single neighbour u to
the solution set and remove u and all of its incident edges
from the graph.

I Note (G, k)→ (G′, k − 1).
I (S. Buss) REDUCTION RULE VC3:

If there is a vertex v of degree at least k + 1, add v to the
solution set and remove v and all of its incident edges from
the graph.

I The result is a graph with no vertices of degree > k and
this can have a VC of size k only if it has < k2 many edges.



STRATEGIES FOR IMPROVING I: BOUNDED SEARCH

TREES

I Buss’s algorithm gives crudely a 2n + kk2
algorithm for

k -VC.
I Here is another algorithm: (DF) Take any edge e = v1v2.

either v1 or v2 is in any VC. Begin a tree T with first
children v1 and v2. At each child delete all edges covered
by the vi .

I repeat to depth k .
I Gives a O(2k · n) algorithm.
I Now combine the two: Gives a 2n + 2kk2 algorithm.



I It is worth remarking that there are problems notably FPT
by bounded search tree (type checking in ML) that are not
known to have polynomial size kernels, and some
“provably” don’t.

I Another easy example for bounded search trees is
PLANAR INDEPENDENT SET. (Start with a degree 5
vertex, branching rule of size 6)



SPEEDING THINGS UP

I Cleverer reduction rules (e.g. branch on higher degree
vertices)

I many, many versions of this idea with increasingly
sophisticated reduction rules.

I This method has a 2005 (Fomin, Grandoni, Kratsch)
incarnation called measure and conquer where the
branching rules are given rational valued weights, and
decisions as to what to do are figured out by optimization.

I Jianer Chen and others use this in many FPT algorithms
such as the state of the art for FEEDBACK VERTEX SET
and VERTEX COVER. O∗(1.2745k )(Chen10 using this,
iterative compression, struction, measure and conquer,
and other methods).

I Smaller kernels ; Nemhauser-Trotter has a size 2k kernel
using LP relaxation.



INTERACTIONS

I Now we can ask lots of questions. How small can the
kernel be?

I Notice that applying the kernelization to the unbounded
problem yields a approximation algorithm.

I Using the PCP theorem we know that no kernel can be
smaller that 1.36 k unless P=NP (Dinur and Safra) as no
better approximation is possible. Is this tight?

I Assuming the “Unique Games Conjecture” the 2k kernel is
tight (Khot etc).

I Actually we know that no O∗(1 + ε)k ) (O∗ looks only at the
exponential part) algorithm is possible unless ETH fails.

I ETH n-valued 3SAT is not in DTIME(2o(n)).



CROWN REDUCTION RULES

DEFINITION
A crown in a graph G = (V ,E) consists of an independent set
I ⊆ V and a set H containing all vertices in V adjacent to I.

I For example a degree 1 vertex and its neighbour is a
crown.

I For a crown I ∪ H in G, then we need at least |H| vertices
to cover all edges in the crown.

I REDUCTION RULE CR:
For any crown I ∪ H in G, add the set of vertices H to the
solution set and remove I ∪H and all of the incide nt edges
of I ∪ H from G.

I Shrinkage (G, k)→ (G′, k − |H|).



I Can get the crown: Take a maximal matching M of G. If
|M| > k say no. Else I = G −M is an independent set
(≤ k ) , and then use bipartite matching to match I and its
neighbours. Combinatorial arguments show that this has a
submatching which is a crown. Delete and repeat.

I Other examples found in SIGACT News
Gou-Niedermeier’s survey on kernelization.



INTERLEAVING

I (Niedermeier and Rossmanith, 2000) showed that
iteratively combining kernelization and bounded search
trees often performs much better than either one alone or
one followed by the other.

I Begin a search tree, and apply kernelization, then continue
etc. Analysing the combinatorics shows a significant
reduction in time complexity, which is very effective in
practice.



ITERATIVE COMPRESSION

I Reed, Smith and Vetta 2004. For the problem of “within k
of being bipartite” (by deletion of edges).

DEFINITION (COMPRESSION ROUTINE)
A compression routine is an algorithm that, given a problem
instance I and a solution of size k , either calculates a smaller
solution or proves that the given solution is of minimum size.



I This was forst successflly applied by Reed, Smith, Vetta to
GRAPH BIPARTITIZATION. The algorithm is similar,
building a minimal bipartitization at each step and using
what we can call acceptable partitions for the search step.

I The best now is O∗(3.83k ), and it works better with
algorithm engineering (Gray Codes, tree pruning) with
(e.g.) biological data Hüffner 2004.

I It is a crucial step for the best two algorithms for VERTREX
COVER (Chen, Kanj, Xia 2010, O∗(1.2745k ) and
FEEDBACK VERTEX SET (Can I remove k vertices and
get a acyclic graph?) (Cao, Chen, Liu, 2009).



LESS PRACTICAL ALGORITHMS

I colour coding for e.g. length k path.
I treewidth and other width metrics. Look at graphs which

are treelike and use dynamic programming or automata.
I Graphs constructed inductively. Treewidth, Pathwidth,

Branschwidth, Cliquewidth mixed width etc. k -Inductive
graphs, plus old favourites such as planarity etc, which can
be viewed as local width.

I Excluding minors.
I Logical metatheorems based on formal problem

description



HARDNESS AND INTRACTABILITY

I Natural basic hardness class: W [1]. Does not matter what
it is, save to say that the analog of Cook’s Theorem is
SHORT NONDETERMINISTIC TURING MACHINE
ACCEPTANCE
Instance: A nondeterministic Turing Machine M and a
positive integer k .
Parameter: k .
Question: Does M have a computation path accepting the
empty string in at most k steps?



I If one believes the philosophical argument that Cook’s
Theorem provides compelling evidence that SAT is
intractible, then one surely must believe the same for the
parametric intractability of SHORT NONDETERMINISTIC
TURING MACHINE ACCEPTANCE.

I Moreover, recent work has shown that if SHORT NTM is
fpt then n-variable 3SAT is in DTIME(2o(n))



I Given two parameterized languages L, L̂ ⊆ Σ∗ × Σ∗, say
L ≤FPT L̂ iff there are (computable) f , x 7→ x ′, k 7→ k ′ and a
constant c, such that for all x ,

(x , k) ∈ L iff (x ′, k ′) ∈ L̂,

in time f (k)|x |c .
I Lots of technical question still open here.



OF RELEVANCE TO THIS MEETING

I Work on online algorithms e.g. online colouring pathwidth
k graphs with 3k + 1 colours (Kierstead-Trotter)

I Also online approximation: BIN PACKING.
I Online width metrics (Downey-McCartin). e.g. persistence.
I FPT (online) approximation, ie no k or certificate for f (k).
I FPT incremental algorithms, e.g. Harting and Niedermeier

LIST COLOURING



ANALOG OF COOK’S THEOREM

I Analog of Cook’s Theorem: (Downey, Fellows, Cai, Chen)
WEIGHTED 3SAT≡FTP SHORT NTM ACCEPTANCE.
WEIGHTED 3SAT

Input: A 3 CNF formula φ
Parameter: k
Question: Does φ has a satisfying assignment of Hamming
weigth k , meaning exactly k literals made true.



W-HIERARCHY

I Think about the usual poly reduction from SAT to 3SAT. It
takes a clause of size p, and turns it into many clauses of
size 3. But the weight control goes awry. A weight 4
assignment could go to anything.

I We don’t think WEIGHTED CNF SAT≤ftpWEIGHTED 3 SAT.
I Gives rise to a heirarchy:

W [1] ⊆W [2] ⊆W [3] . . .W [SAT ] ⊆W [P] ⊆ XP.

I XP is quite important, it is the languages which are in
DTIME(nf (k)) with various levels of uniformity, depending
on the choice of reductions.



I XP has k -CAT AND MOUSE GAME and some other games ((DF99a)),
I W [P] has LINEAR INEQUALITIES, SHORT SATISFIABILITY, WEIGHTED CIRCUIT

SATISFIABILITY ((ADF95)) and MINIMUM AXIOM SET((DFKHW94)).
I Then there are a number of quite im portant problems from combinatorial pattern

matching which are W [t] hard for all t : LONGEST COMMON SUBSEQUENCE (k =
number of seqs.,|Σ|-two parameters) ((BDFHW95)), FEASIBLE REGISTER
ASSIGNMENT, TRIANGULATING COLORED GRAPHS, BANDWIDTH, PROPER
INTERVAL GRAPH COMPLETION ((BFH94)), DOMINO TREEWIDTH ((BE97)) and
BOUNDED PERSISTE NCE PATHWIDTH ((McC03)).

I W [2] include WEIGHTED {0, 1} INTEGER PROGRAMMING, DOMINATING SET
((DF95a)), TOURNAMENT DOMINATING SET ((DF95c)) UNIT LENGTH
PRECEDENCE CONSTRAINED SCHEDULING (hard) ((BF95)), SHORTEST
COMMON SUPERSEQUENCE (k )(hard) ((FHK95)), MAXIMUM LIKELIHOOD
DECODING (hard), WEIGHT DISTRIBUTION IN LINEAR CODES (hard), NEAREST
VECTOR IN INTEGER LATTICES (hard) ((DFVW99)), SHORT PERMUTATION
GROUP FACTORIZATION (hard).

I W [1] we have a collection including k -STEP DERIVATION FOR CONTEXT

SENSITIVE GRAMMARS, SHORT NTM COMPUTATION, SHORT POST

CORRESPONDENCE, SQUARE TILING ((CCDF96)), WEIGHTED q–CNF

SATISFIABILITY ((DF95b)), VAPNIK–CHERVONENKIS DIMENSION ((DEF93))

LONGEST COMMON SUBSEQUENCE (k , m = LENGTH OF COMMON SUBSEQ.)

((BDFW95)), CLIQUE, INDEPENDENT SET ((DF95b)), and MONOTONE DATA

COMPLEXITY FOR RELATIONAL DATABASES



I Notice that there are at least two ways to parameterize:
Parameterize the part of the problem you want to look at
and to parameterize the problem itself.

I This point of view makes this sometime a promise
problem. Input something, promise it is parameterized, and
ask questions about it.

I Two interpretations one with certificate one only with a
promise. e.g. CLIQUEWIDTH, PATHWIDTH.

I Some recent work “lowers the hardness barrier”; perhaps
giving better inapproximability results.



ETH

I Recall the exponential time hypthesis is (ETH) n-variable
3-SATISFIABILITY is not solvable in DTIME(2o(n)).
(Impagliazzo Paturi and Zane.)

I This is seen an important refinement of P 6= NP that is
widely held to be true.

I It is related to FPT as we now see.



THE MINIMOB

I INPUT A parametrically minature problem QUESTION Is it
in the class
e.g. INPUT a graph G of size k log n with n in unary.
Does it have a vertex cover of size d?

I Get mini Vertex cover, mini Dominating set, Minisat etc.
I Core problem: minicircuitsat.

THEOREM (CHOR, FELLOWS AND JUEDES ; DOWNEY ET.
AL. )
The M[1] complete problems such as MIN-3SAT are in FPT iff
the exponential time hypothesis fails.

I That is, more or less, EPT is the “same” as M[1] 6= FPT .
I And now we have a method of demonstrating no good

subexponential algorithm; Show M[1] hardness.
I Chen-Grohe established an insomorphism between the

complexity degree structures.
I Fellows conjectures that PCP like techniques will show

M[1]=W[1] using randomized reductions



XP-OPTIMALITY

I This new programme regards the classes like W[1] as
artifacts of the basic problem of proving hardness under
reasonable assumptions, and strikes at membership ofXP.

I Eg INDEPENDENT SET and DOMINATING SET which
certainly are in XP. But what’s the best exponent we can
hope for for slice k? They are clearly solvable in time
O(nk+1).

THEOREM (CHEN ET. AL 05)
The following hold:

(i) INDEPENDENT SET cannot be solved in time no(k)

unless FPT=M[1].
(ii) DOMINATING SET cannot be solved in time no(k)

unless FPT=M[2].



I The proofs recycle and miniaturize various NP and W[1]
completeness results.

I Many recent results of similar ilk based on ETH or SETH,
such as results on treewidth etc.



WHERE ELSE?

I Another area is approximation. Here we ask for an
algorithm which either says “no solution of size k ” or here
is one of size 2k (say).

I For example BIN PACKING is has to (k ,2k)-approx, but
k -INDEPENDENT DOMINATING SET has not approx of the
form (k ,F (k)) for any computable F unless FPT = W [1].
(DFMccartin)

I Flum Grohe show that all natural W [P] complete problems
don’t have approx of the form (k ,F (k)) for any computable
F unless FPT = W [P].



REMEMBER KERNELIZATION?

I When can we show that a FPT problem likely has no
polynomial size kernel?

I Notice that if P=NP then all have constant size kernel, so
some reasonable assumption is needed.

I New generic techniques for showing that problems don’t
have kernels assuming PH does not collapse. e.g.
k -PATH. TREEWIDTH (by a current PhD student at MIT).
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WHAT SHOULD YOU DO?

I You should buy that new wonderful book...(and its friends)
I Thanks!


