Parameterized Complexity of some Permutation Group Problems

V. Arvind

Institute of Mathematical Sciences, Chennai

India

email arvind@imsc.res.in

January 9, 2013

Plan of Talk

- Permutation groups background.
- Fixed point free elements of a permutation group (and its parameterization).
- Computing a minimum base for a permutation group (and its parameterization).

Permutation Groups: Definitions

- S_n denotes the group of all permutations on n elements. Forms a group under permutation composition.
- A subgroup G of S_n , denoted $G \leq S_n$, is called a *permutation group* (of degree n).
- The permutation group $\langle S \rangle$, generated by a subset $S \subseteq S_n$ of permutations, is the smallest subgroup of S_n containing S.

Every finite group G has a generating set of size log₂ |G|.
So, giving a generating set is a succinct presentation of a finite group as algorithmic input.

Definitions Contd.

- For a permutation $\pi \in S_n$, a point $i \in [n]$ is a *fixed point* if $\pi(i) = i$.
- $fix(\pi)$ is the number of points fixed by π .
- A permutation group $G \leq S_n$ induces an equivalence relation on the domain [n]: i and j are related iff g(i) = j for some $g \in G$. The equivalence classes are the *orbits* of G.
- G is called *transitive* if there is exactly one orbit.

Orbit Counting Lemma

Some ancient results (by CS standards):

Lemma 1 (Orbit Counting) Let $G \leq S_n$ be any permutation group and $\operatorname{orb}(G)$ denote the number of orbits of G. Then

$$\operatorname{orb}(G) = \frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g).$$

Theorem 2 (Jordan's Theorem (1872)) If $G \le S_n$ is transitive then the group G has a fixed point free element.

Follows easily from the Orbit Counting Lemma.

Cameron-Cohen's Theorem

Theorem 3 (CC92) If $G \leq S_n$ is transitive then the group G has a fixed point free element then there are at least |G|/n many elements that are fixed point free.

Remark 4 Let $G = \langle S \rangle$ be a permutation group given as input by generating set S. Using an algorithm of C. Sims [1970] it is possible to sample uniformly at random from G in polynomial time. This gives a simple randomized algorithm for computing a fixed point free element.

We derandomize this as part of our FPT algorithm.

Fixed Point Free Elements

- Computing fixed point free elements in *nontransitive* permutation groups $G = \langle S \rangle$ given by generating sets is known to be NP-hard [Cameron-Wu 2010].
- This is similar to the NP-hard problem of computing a fixed point free automorphism of a graph [Lubiw 1980].
- We now introduce a parameterized version of the problem.

Fixed Point Free: Parameterized

• *k*-MOVE Problem:

Input: A permutation group $G = \langle S \rangle \leq S_n$ given by generators and a parameter k.

Problem: Is there an element in G that moves at least k points (i.e. the element fixes at most n - k points).

For k = n notice that such an element if fixed point free. Our first result:

Theorem 5 The k-MOVE problem is fixed parameter tractable (in time $2^{2k+O(\sqrt{k} \lg k)} k^{O(1)} + n^{O(1)}$).

Proof Idea

- Let move(g) denote the number of points moved by $g \in G$ and move(G) denote the number of points moved by some $g \in G$.
- The orbit counting proof method easily yields for any permutation group G that $\frac{1}{|G|} \sum_{g \in G} \operatorname{move}(g) \ge \operatorname{move}(G)/2$.
- The left side in the above inequality is an expectation. We can "derandomize" this and find a $g \in G$ such that $move(g) \ge move(G)/2$ in polynomial time.

• If $move(G) \ge 2k$ we are done. If $move(G) \le 2k$, the domain shrinks to size 2k giving a kernel of that size.

Bases for Permutation Groups

• Let $G \leq S_n$ be a permutation group. A subset of points $B \subseteq [n]$ is called a *base* for G if the subgroup G_B of G that fixes every point of G is the identity.

 This generalizes bases for vector spaces and has proven computationally useful. There is a library of nearly linear-time algorithms for small base groups due to Akos Seress and others.

• Finding minimum bases of permutation groups is NP-hard [Blaha 1992] even for cyclic groups and groups with bounded orbit size.

The *k*-BASE problem

We define the parameterized complexity with |B| as parameter for cyclic and bounded orbit groups.

Input: A permutation group $G = \langle S \rangle \leq S_n$ given by generators and a parameter k.

Problem: Is there a base for G of size at most k?

Our results:

Theorem 6 • The k-BASE problem is fixed parameter tractable for cyclic permutation groups and for permutation groups with bounded orbit size.

Some Questions

For example:

- The parameterized complexity of *k*-BASE for general permutation groups?
- Parameterized versions of Graph Isomorphism and related problems...

THANKS!